


Smooth CoffeeScript

E. Hoigaard

http://autotelicum.github.com/Smooth-CoffeeScript

http://autotelicum.github.com/Smooth-CoffeeScript


An introduction to CoffeeScript programming with
an emphasis on clarity, abstraction and verification.

The book is freely available, and may be used (as a whole or in parts)
in any way you see fit, as long as credit is given to the original author.

Based on Eloquent JavaScript by Marijn Haverbeke.

Typeset in LYX / XeTEX with Arcitectura.
1st edition, 3rd revision & illustrations © 2554 BE / 2011 CE.

Public domain cover photo.

http://creativecommons.org/licenses/by/3.0/
http://eloquentjavascript.net/
http://www.accesstoinsight.org/history.html#fn-1
http://www.accesstoinsight.org/history.html#fn-2
http://www.publicdomainpictures.net/view-image.php?image=11133&picture=ostriches-look


Contents

Preface 5

Foreword 6

Software 9

Language 11

Introduction 12

Basic CoffeeScript 19

Functions 42

Data Structures 57

Error Handling 82

Paradigm 89

Functional Programming 90

Searching 115

Object Orientation 137

Regular Expressions 153

Modularity 161

3



Contents

Appendix 179

Language Extras 180

Binary Heaps 185

Performance 192

Command Line Utility 194

Reference and Index 197

Reference 198

Index 211

4



Preface

5



Foreword

CoffeeScript is a lucid evolution of JavaScript created by Jeremy Ashke-
nas. This book attempts to be an evolution of “Eloquent JavaScript” by
Marijn Haverbeke. Apart from the major change in explaining Coffee-
Script instead of JavaScript, numerous other changes have been made and
sections have been added, edited or removed.
Everything that is expressed in this book is therefore solely the responsi-
bility of the editor. In the sense of open source software, this book is a
fork. To read the excellent original JavaScript work as it was intended by
its author refer to Eloquent JavaScript by Marijn Haverbeke.
You do not need to know JavaScript but after reading Smooth CoffeeScript you
can in JavaScript Basics by Rebecca Murphey find an overview that can
be helpful when debugging or using JavaScript libraries.

◦ • ◦
The program examples in this book use a prelude file in addition to the
CoffeeScript environment. It includes the Underscore functional library,
the Coffeekup HTML markup, ws server-side WebSockets and qc, a Quick-
Check based testing library. These libraries extend CoffeeScript with use-
ful abstractions and testing tools to keep focus on the task at hand instead
of distracting boilerplate code.
While it is possible to express programs from a very small set of language
primitives, it quickly becomes tedious and error prone to do so. The ap-
proach taken here is to include a broader set of functional building blocks
as if they were a native part of the programming language. By thinking
in terms of these higher level constructs more complex problems can be
handled with less effort.
To ensure correctness testing is required. This is especially true when de-
veloping reusable algorithms in a dynamic and untyped language. By in-
tegrating QuickCheck style test cases as soon as functions are introduced,
it is intended that writing tests and declaring assumptions become a seam-
less part of writing software.

6

http://en.wikipedia.org/wiki/Fork_(software_development)
http://eloquentjavascript.net/
http://autotelicum.github.com/Smooth-CoffeeScript/literate/js-intro.html


Foreword

CoffeeScript is available in browsers and environments where JavaScript
is available. The screenshots below show CoffeeScript running the same
web server and client application on Mac OS X, Windows and iOS.

7



Foreword

The CoffeeScript below shows the brevity of the self-contained applica-
tion from the screenshots. It contains an HTML 5 web page in Coffeekup
markup and its own HTTP web server. The page has a Canvas element
with a drawing of the ‘Seed of Life’. Coffeekup is a few hundred lines of
CoffeeScript. No frameworks. No JavaScript. Pure and smooth.
require './prelude'

webpage = kup.render ->
doctype 5
html ->

head ->
meta charset: 'utf-8'
title 'My drawing | My awesome website'
style '''

body {font-family: sans-serif}
header, nav, section, footer {display: block}

'''
coffeescript ->

draw = (ctx, x, y) ->
circle = (ctx, x, y) ->

ctx.beginPath()
ctx.arc x, y, 100, 0, 2*Math.PI, false
ctx.stroke()

ctx.strokeStyle = 'rgba(255,40,20,0.7)'
circle ctx, x, y
for angle in [0...2*Math.PI] by 1/3*Math.PI

circle ctx, x+100*Math.cos(angle),
y+100*Math.sin(angle)

window.onload = ->
canvas = document.getElementById 'drawCanvas'
context = canvas.getContext '2d'
draw context, 300, 200

body ->
header -> h1 'Seed of Life'
canvas id: 'drawCanvas', width: 600, height: 400

http = require 'http'
server = http.createServer (req, res) ->

show "#{req.client.remoteAddress} #{req.method} #{req.url}"
res.writeHead 200, 'Content-Type': 'text/html'
res.write webpage
res.end()

server.listen 3389
show 'Server running at'
show server.address()

8



Software

Smooth CoffeeScript is about the CoffeeScript language, see Quick CoffeeScript
Install or refer to the websites for further installation information. This
should get you started:

• The CoffeeScript language (1.1.3 / MIT) from Jeremy Ashkenas
• The Underscore library (1.1.0.FIX / MIT) included in CoffeeScript
• The Coffeekup library (0.3.1 / MIT) from Maurice Machado
• Translated ws WebSockets (MIT) from Jacek Becela
• The qc testing library1 (2009 / BSD) from Darrin Thompson

The required libraries have been adapted for standard CoffeeScript and are
included in the src/prelude directory. Underscore, ws and Coffeekup are
written in CoffeeScript and they are small enough to read and understand
in a short time — at least after you have read this book.

◦ • ◦
To set up your own working environment follow the steps described here
or at coffeescript.org2. If you use Windows then you can adapt the prelude
to default to your preferred web browser. You can also find instructions
there for how to enable WebSockets if your browser requires it.
Then set up your text editor to support CoffeeScript, you can find several
on the CoffeeScript wiki. For example to use the TextMate bundle with the
cross-platform Sublime Text 2 editor, unpack the bundle in a CoffeeScript
directory under Packages. This setup gives you syntax highlighting, code
snippets, and code completion.

1This library is only used to test functionality. The CoffeeScript applications in Smooth
CoffeeScript do not depend on it. CoffeeScript is a new language and tools like qc depend
on legacy code written in JavaScript.

2The CoffeeScript examples have been tested on Mac OS X 10.6 and on Windows 7
with the prebuilt node installers.

9

http://autotelicum.github.com/Smooth-CoffeeScript/literate/install-notes.html
http://autotelicum.github.com/Smooth-CoffeeScript/literate/install-notes.html
http://www.coffeescript.org
http://jashkenas.github.com/coffee-script/documentation/docs/underscore.html
http://coffeekup.org/
https://github.com/ncr/node.ws.js
https://bitbucket.org/darrint/qc.js/
http://autotelicum.github.com/Smooth-CoffeeScript/literate/install-notes.html
http://jashkenas.github.com/coffee-script/#installation
https://github.com/jashkenas/coffee-script/wiki/Text-editor-plugins
https://github.com/jashkenas/coffee-script-tmbundle
http://www.sublimetext.com/2


Software

You can add a build file to get execution of CoffeeScript with the press of
a button. Name the file CoffeeScript.sublime-build and change the path
according to you operating system and install location. Something like:
{

"cmd": ["/Users/username/bin/coffee", "$file"],
"file_regex": "^Error: In (...*?),

Parse error on line ([0-9]*):?",
"selector": "source.coffee"

}

Finally open a command-line in a terminal and type (again adjust for your
platform)
cd path-to-smooth-coffeescript/src
coffee -r ./prelude

Then you have a CoffeeScript Read-Eval-Print-Loop (REPL) at your dis-
posal. Read the usage section for more information on the CoffeeScript
compiler. You can run samples with coffee filename.coffee.

◦ • ◦
Smooth CoffeeScript comes in two editions; with and without solutions. Com-
plete by chapter source code files are in the src directory. A copy of all
files are in src-no-solutions, these files have stops where you can insert
your own solutions.
To get the most out of the book: Start your text editor and in src-no-
solutions open the source code file for the chapter you are reading. If
you have a wide-screen display then arrange your windows so the book is
on one side and the text editor on the other. Then you can read and run the
samples, see the results, experiment with the code and solve the exercises.
If you make copies of the files you work on then you can easily undo
experiments. If you get stuck with an exercise then copy my solution
from the file in the src directory and study it a bit before moving on. Note
that in some of the source files you have to indent your solutions to match
the surrounding code.
Both editions and accompanying source files can be downloaded from:
http://autotelicum.github.com/Smooth-CoffeeScript/

10

http://jashkenas.github.com/coffee-script/#installation
http://autotelicum.github.com/Smooth-CoffeeScript/


Language

11



Introduction

When personal computers were first introduced, most of them came equip-
ped with a simple programming language, usually a variant of BASIC.
Interacting with the computer was closely integrated with this language,
and thus every computer-user, whether he wanted to or not, would get a
taste of it. Now that computers have become plentiful and cheap, typical
users do not get much further than clicking things with a mouse. For most
people, this works very well. But for those of us with a natural inclination
towards technological tinkering, the removal of programming from every-
day computer use presents something of a barrier.
Fortunately, as an effect of developments in the World Wide Web, it so
happens that every computer equipped with a modern web-browser also
has an environment for programming JavaScript which can easily be adap-
ted to an environment for CoffeeScript. In today’s spirit of not bothering
the user with technical details, it is kept well hidden, but a web-page can
make it accessible, and use it as a platform for learning to program. You
can find such an environment in the menu on coffeescript.org select ‘Try
CoffeeScript’ or use the ‘load’ button below the examples.

◦ • ◦
I do not enlighten those who are not eager to learn, nor arouse
those who are not anxious to give an explanation themselves.
If I have presented one corner of the square and they cannot
come back to me with the other three, I should not go over the
points again.

Confucius

Besides explaining CoffeeScript, this book tries to be an introduction to
the basic principles of programming. Programming, it turns out, is hard.
The fundamental rules are, most of the time, simple and clear. But pro-
grams, while built on top of these basic rules, tend to become complex

12

http://coffeescript.org


Introduction

enough to introduce their own rules, their own complexity. Because of
this, programming is rarely simple or predictable. As Donald Knuth, who
is something of a founding father of the field, says, it is an art.
To get something out of this book, more than just passive reading is re-
quired. Try to stay sharp, make an effort to solve the exercises, and only
continue on when you are reasonably sure you understand the material
that came before.

◦ • ◦
The computer programmer is a creator of universes for which
he alone is responsible. Universes of virtually unlimited com-
plexity can be created in the form of computer programs.

Joseph Weizenbaum, Computer Power

and Human Reason

A program is many things. It is a piece of text typed by a programmer, it
is the directing force that makes the computer do what it does, it is data
in the computer’s memory, yet it controls the actions performed on this
same memory. Analogies that try to compare programs to objects we are
familiar with tend to fall short, but a superficially fitting one is that of a
machine. The gears of a mechanical watch fit together ingeniously, and if
the watchmaker was any good, it will accurately show the time for many
years. The elements of a program fit together in a similar way, and if
the programmer knows what he is doing, the program will run without
crashing.
A computer is a machine built to act as a host for these immaterial ma-
chines. Computers themselves can only do stupidly straightforward things.
The reason they are so useful is that they do these things at an incredibly
high speed. A program can, by ingeniously combining many of these sim-
ple actions, do very complicated things.
To some of us, writing computer programs is a fascinating game. A pro-
gram is a building of thought. It is costless to build, weightless, growing
easily under our typing hands. If we get carried away, its size and com-
plexity will grow out of control, confusing even the one who created it.
This is the main problem of programming. It is why so much of today’s
software tends to crash, fail, screw up.
When a program works, it is beautiful. The art of programming is the skill
of controlling complexity. The great program is subdued, made simple in
its complexity.

13



Introduction

◦ • ◦
Today, many programmers believe that this complexity is best managed
by using only a small set of well-understood techniques in their programs.
They have composed strict rules about the form programs should have,
and the more zealous among them will denounce those who break these
rules as bad programmers.
What hostility to the richness of programming! To try to reduce it to some-
thing straightforward and predictable, to place a taboo on all the weird and
beautiful programs. The landscape of programming techniques is enor-
mous, fascinating in its diversity, still largely unexplored.
It is certainly littered with traps and snares, luring the inexperienced pro-
grammer into all kinds of horrible mistakes, but that only means you
should proceed with caution, keep your wits about you. As you learn,
there will always be new challenges, new territory to explore. The pro-
grammer who refuses to keep exploring will surely stagnate, forget his
joy, lose the will to program (and become a manager).
As far as I am concerned, the definite criterion for a program is whether it is
correct. Efficiency, clarity, and size are also important, but how to balance
these against each other is always a matter of judgement, a judgement that
each programmer must make for himself. Rules of thumb are useful, but
one should never be afraid to break them.

◦ • ◦
In the beginning, at the birth of computing, there were no programming
languages. Programs looked something like this:
00110001 00000000 00000000 00110001 00000001 00000001
00110011 00000001 00000010 01010001 00001011 00000010
00100010 00000010 00001000 01000011 00000001 00000000
01000001 00000001 00000001 00010000 00000010 00000000
01100010 00000000 00000000

That is a program to add the numbers from one to ten together, and print
out the result (1 + 2 + … + 10 = 55). It could run on a very simple kind of
computer. To program early computers, it was necessary to set large arrays
of switches in the right position, or punch holes in strips of cardboard and
feed them to the computer. You can imagine how this was a tedious, error-
prone procedure. Even the writing of simple programs required much
cleverness and discipline, complex ones were nearly inconceivable.

14



Introduction

Of course, manually entering these arcane patterns of bits (which is what
the 1s and 0s above are generally called) did give the programmer a pro-
found sense of being a mighty wizard. And that has to be worth something,
in terms of job satisfaction.
Each line of the program contains a single instruction. It could be written
in English like this:

1 Store the number 0 in memory location 0
2 Store the number 1 in memory location 1
3 Store the value of memory location 1 in location 2
4 Subtract the number 11 from the value in location 2
5 If the value in memory location 2 is the number 0, continue

with instruction 9
6 Add the value of memory location 1 to location 0
7 Add the number 1 to the value of memory location 1
8 Continue with instruction 3
9 Output the value of memory location 0

While that is more readable than the binary soup, it is still rather unpleas-
ant. It might help to use names instead of numbers for the instructions and
memory locations:
Set 'total' to 0
Set 'count' to 1
[loop]
Set 'compare' to 'count'
Subtract 11 from 'compare'
If 'compare' is zero, continue at [end]
Add 'count' to 'total'
Add 1 to 'count'
Continue at [loop]
[end]
Output 'total'

At this point it is not too hard to see how the program works. Can you?
The first two lines give two memory locations their starting values: total
will be used to build up the result of the program, and count keeps track of
the number that we are currently looking at. The lines using compare are
probably the weirdest ones. What the program wants to do is see if count
is equal to 11, in order to decide whether it can stop yet. Because the ma-
chine is so primitive, it can only test whether a number is zero, and make
a decision (jump) based on that. So it uses the memory location labelled
compare to compute the value of count - 11, and makes a decision based
on that value. The next two lines add the value of count to the result, and

15



Introduction

increment count by one every time the program has decided that it is not
11 yet. Here is the same program in CoffeeScript:
total = 0
count = 1
while count <= 10

total += count
count += 1

show total

This gives us a few more improvements. Most importantly, there is no
need to specify the way we want the program to jump back and forth any-
more. The magic word while takes care of that. It continues executing
the lines indented below it as long as the condition it was given holds:
count <= 10, which means ‘count is less than or equal to 10’. Appar-
ently, there is no need anymore to create a temporary value and compare
that to zero. This was a stupid little detail, and the power of programming
languages is that they take care of stupid little details for us.
This can also be expressed in a shorter form in CoffeeScript:
total = 0
total += count for count in [1..10]
show total

The for and in words goes through the range of numbers from 1 to 10
[1..10], assigning each number in turn to count. Each value in count is
then added to total.
Finally, here is what the program could look like if we happened to have
the convenient operation sum available, which computes the sum of a col-
lection of numbers similar to the mathematical notation ∑10

n=1 n:
show sum [1..10]

Another possibility is to have functions attached to datatypes. Here a sum
function is attached to an array, giving the sum of the elements in the array.
show [1..10].sum()

The moral of this story, then, is that the same program can be expressed
in long and short, unreadable and readable ways. The first version of the
program was extremely obscure, while the last ones are almost English:
show the sum of the numbers from 1 to 10. (We will see in later chapters
how to build things like sum.)

16



Introduction

A good programming language helps the programmer by providing a more
abstract way to express himself. It hides uninteresting details, provides
convenient building blocks (such as the while construct), and, most of the
time, allows the programmer to add building blocks himself (such as the
sum operation).

◦ • ◦
JavaScript is the language that is, at the moment, mostly being used to do
all kinds of clever and horrible things with pages on the World Wide Web.
JavaScript is also used for scripting in a variety of applications and op-
erating systems. Of special note is server-side JavaScript (SSJS), where
the server portion of a web application is written in JavaScript, so a full
application can be expressed in one programming language. CoffeeScript
generates standard JavaScript code and can therefore be used in environ-
ments where standard JavaScript is accepted. It means that both browser
portions and server portions can be written in CoffeeScript.
CoffeeScript is a new language so it remains to be seen how popular it
becomes for general application development, but if you are interested in
programming, CoffeeScript is definitely a useful language to learn. Even
if you do not end up doing much web programming, the mind-bending
programs in this book will always stay with you, haunt you, and influence
the programs you write in other languages.
There are those who will say terrible things about JavaScript. Many of
these things are true. When I was for the first time required to write some-
thing in JavaScript, I quickly came to despise the language. It would ac-
cept almost anything I typed, but interpret it in a way that was completely
different from what I meant. This had a lot to do with the fact that I did
not have a clue what I was doing, but there is also a real issue here: Java-
Script is ridiculously liberal in what it allows. The idea behind this design
was that it would make programming in JavaScript easier for beginners.
In actuality, it mostly makes finding problems in your programs harder,
because the system will not point them out to you.
However, the flexibility of the language is also an advantage. It leaves
space for a lot of techniques that are impossible in more rigid languages,
and it can be used to overcome some of JavaScript’s shortcomings. After
learning it properly, and working with it for a while, I have really learned
to like this language. CoffeeScript repairs many of the confusing and cum-
bersome aspects of JavaScript, while keeping its underlying flexibility and
beauty. It is doubleplusgood.

17

http://en.wikipedia.org/wiki/JavaScript#Uses_outside_web_pages
http://en.wikipedia.org/wiki/JavaScript#Uses_outside_web_pages


Introduction

◦ • ◦
Most chapters in this book contain quite a lot of code3. In my experience,
reading and writing code is an important part of learning to program. Try
to not just glance over these examples, but read them attentively and un-
derstand them. This can be slow and confusing at first, but you will quickly
get the hang of it. The same goes for the exercises. Do not assume you
understand them until you have actually written a working solution.
Because of the way the web works, it is always possible to look at the Java-
Script programs that people put in their web-pages. This can be a good
way to learn how some things are done. Because most web programmers
are not ‘professional’ programmers, or consider JavaScript programming
so uninteresting that they never properly learned it, a lot of the code you
can find like this is of a very bad quality. When learning from ugly or
incorrect code, the ugliness and confusion will propagate into your own
code, so be careful who you learn from. Another source of programs are
CoffeeScript projects hosted on open source services such as github.

3‘Code’ is the substance that programs are made of. Every piece of a program, whether
it is a single line or the whole thing, can be referred to as ‘code’.

18

https://github.com


Basic CoffeeScript:
values, variables, and control flow

Inside the computer’s world, there is only data. That which is not data,
does not exist. Although all data is in essence just a sequence of bits4,
and is thus fundamentally alike, every piece of data plays its own role.
In CoffeeScript’s system, most of this data is neatly separated into things
called values. Every value has a type, which determines the kind of role it
can play. There are six basic types of values: Numbers, strings, booleans,
objects, functions, and undefined values.
To create a value, one must merely invoke its name. This is very con-
venient. You do not have to gather building material for your values, or
pay for them, you just call for one and woosh, you have it. They are not
created from thin air, of course. Every value has to be stored somewhere,
and if you want to use a gigantic amount of them at the same time you
might run out of computer memory. Fortunately, this is only a problem if
you need them all simultaneously. As soon as you no longer use a value,
it will dissipate, leaving behind only a few bits. These bits are recycled to
make the next generation of values.

◦ • ◦
Values of the type number are, as you might have deduced, numeric val-
ues. They are written the way numbers are usually written:
144

Enter that in the console, and the same thing is printed in the output win-
dow. The text you typed in gave rise to a number value, and the console
took this number and wrote it out to the screen again. In a case like this,
that was a rather pointless exercise, but soon we will be producing values

4Bits are any kinds of two-valued things, usually described as 0s and 1s. Inside the
computer, they take forms like a high or low electrical charge, a strong or weak signal,
a shiny or dull spot on the surface of a CD.

19



Basic CoffeeScript

in less straightforward ways, and it can be useful to ‘try them out’ on the
console to see what they produce.
This is what 144 looks like in bits5:
01000000 01100010 00000000 00000000 00000000 00000000 00000000 00000000

The number above has 64 bits. Numbers in CoffeeScript always do. This
has one important repercussion: There is a limited amount of different
numbers that can be expressed. With three decimal digits, only the num-
bers 0 to 999 can be written, which is 103 = 1000 different numbers. With
64 binary digits, 264 different numbers can be written. This is a lot, more
than 1019 (a one with nineteen zeroes).
Not all whole numbers below 1019 fit in a CoffeeScript number though.
For one, there are also negative numbers, so one of the bits has to be used
to store the sign of the number. A bigger issue is that non-whole numbers
must also be represented. To do this, 11 bits are used to store the position
of the decimal dot within the number.
That leaves 52 bits6. Any whole number less than 252, which is over 1015,
will safely fit in a CoffeeScript number. In most cases, the numbers we
are using stay well below that, so we do not have to concern ourselves
with bits at all. Which is good. I have nothing in particular against bits,
but you do need a terrible lot of them to get anything done. When at all
possible, it is more pleasant to deal with bigger things.
Fractional numbers are written by using a dot.
9.81

For very big or very small numbers, one can also use ‘scientific’ notation
by adding an e, followed by the exponent of the number:
2.998e8

Which is 2.998 ·108 = 299 800 000.
Calculations with whole numbers (also called integers) that fit in 52 bits
are guaranteed to always be precise. Unfortunately, calculations with frac-
tional numbers are generally not. Like π (pi) can not be precisely ex-
pressed by a finite amount of decimal digits, many numbers lose some

5If you were expecting something like 10010000 here — good call, but read on.
CoffeeScript’s numbers are not stored as integers.

6Actually, 53, because of a trick that can be used to get one bit for free. Look up the
‘IEEE 754’ format if you are curious about the details.

20



Basic CoffeeScript

precision when only 64 bits are available to store them. This is a shame,
but it only causes practical problems in very specific situations7. The im-
portant thing is to be aware of it, and treat fractional digital numbers as
approximations, not as precise values.

◦ • ◦
The main thing to do with numbers is arithmetic. Arithmetic operations
such as addition or multiplication take two number values and produce a
new number from them. Here is what they look like in CoffeeScript:
100 + 4 * 11

The + and * symbols are called operators. The first stands for addition, and
the second for multiplication. Putting an operator between two values will
apply it to those values, and produce a new value.
Does the example mean ‘add 4 and 100, and multiply the result by 11’, or is
the multiplication done before the adding? As you might have guessed, the
multiplication happens first. But, as in mathematics, this can be changed
by wrapping the addition in parentheses:
(100 + 4) * 11

For subtraction, there is the - operator, and division can be done with /.
When operators appear together without parentheses, the order in which
they are applied is determined by the precedence of the operators. The first
example shows that multiplication has a higher precedence than addition.
Division and multiplication always come before subtraction and addition.
When multiple operators with the same precedence appear next to each
other (1 - 1 + 1) they are applied left-to-right.
Try to figure out what value this produces, and then run it to see if you
were correct…
115 * 4 - 4 + 88 / 2

These rules of precedence are not something you should worry about.
When in doubt, just add parentheses.

7An example of this, if p = 1/3 then 6*p is equal to 2. However p+p+p+p+p+p is
not equal to 2 because the minute rounding errors increase for every addition. This
happens in the for loop shown in the Foreword. It is a general issue with floating
point approximations and not a bug in CoffeeScript. A way of dealing with it is to
test if a number is inside a narrow interval instead of testing for an exact match.

21



Basic CoffeeScript

There is one more arithmetic operator which is probably less familiar to
you. The % symbol is used to represent the modulo operation. X modulo Y
is the remainder of dividing X by Y. For example 314 % 100 is 14, 10 % 3
is 1, and 144 % 12 is 0. Modulo has the same precedence as multiplication
and division.

◦ • ◦
The next data type is the string. Its use is not as evident from its name
as with numbers, but it also fulfills a very basic role. Strings are used to
represent text, the name supposedly derives from the fact that it strings to-
gether a bunch of characters. Strings are written by enclosing their content
in quotes:
'Patch my boat with chewing gum.'

Almost anything can be put between quotes, and CoffeeScript will make
a string value out of it. But a few characters are tricky. You can imagine
how putting quotes between quotes might be hard.
'The programmer pondered: "0x2b or not 0x2b"'

CoffeeScript implements both single quoted and double quoted strings,
which can be handy when you have only one kind of quote in a string.
"Aha! It's 43 if I'm not a bit off"

Double quoted strings can contain interpolated values, small snippets of
CoffeeScript code between #{ and }. The code is evaluated and inserted
into the string.
"2 + 2 gives #{2 + 2}"

Newlines, the things you get when you press enter, can not be put between
quotes in the normal form of strings. A string can span multiple lines to
help avoid overly long lines in the program but the line breaks are not
shown in the output.
'Imagine if this was a
very long line of text'

◦ • ◦
CoffeeScript has triple-quoted strings aka heredocs to make it easy to have
strings that span multiple lines where the line breaks are preserved in the
output. Indentation before the quotes are ignored so the following lines
can be aligned nicely.

22



Basic CoffeeScript

'''First comes A
then comes B'''

The triple double quoted variant allows for interpolated values.
""" 1

+ 1
---

#{1 + 1}"""

Still to be able to have special characters in a string, the following trick is
used: Whenever a backslash (‘\’) is found inside quoted text, it indicates
that the character after it has a special meaning. A quote that is preceded by
a backslash will not end the string, but be part of it. When an ‘n’ character
occurs after a backslash, it is interpreted as a newline. Similarly, a ‘t’ after
a backslash means a tab character.
'This is the first line\nAnd this is the second'

There are of course situations where you want a backslash in a string to be
just a backslash, not a special code. If two backslashes follow each other,
they will collapse right into each other, and only one will be left in the
resulting string value:
'A newline character is written like \"\\n\".'

◦ • ◦
Strings can not be divided, multiplied, or subtracted. The + operator can
be used on them. It does not add, but it concatenates, it glues two strings
together.
'con' + 'cat' + 'e' + 'nate'

There are more ways of manipulating strings, but these are discussed later.
◦ • ◦

Not all operators are symbols, some are written as words. For example,
the typeof operator, which produces a string value naming the type of the
value you give it.
typeof 4.5

23



Basic CoffeeScript

The other operators we saw all operated on two values, typeof takes only
one. Operators that use two values are called binary operators, while those
that take one are called unary operators. The minus operator can be used
both as a binary and a unary operator8:
-(10 - 2)

◦ • ◦
Then there are values of the boolean type. There are two of these: true
and false. CoffeeScript has some aliases for them: true can be written
as yes or on. false as no or off. These alternatives can in some cases
make a program easier to read. Here is one way to produce a true value:
3 > 2

And false can be produced like this:
3 < 2

I hope you have seen the > and < signs before. They mean, respectively, ‘is
greater than’ and ‘is less than’. They are binary operators, and the result of
applying them is a boolean value that indicates whether they hold in this
case. You can chain comparisons to test if something is within an interval.
These comparisons give respectively true and false:
100 < 115 < 200
100 < 315 < 200

Strings can be compared in the same way:
'Aardvark' < 'Zoroaster'

The way strings are ordered is more or less alphabetic. More or less…
Uppercase letters are always ‘less’ than lowercase ones, so 'Z'< 'a' is
true, and non-alphabetic characters (‘!’, ‘@’, etc) are also included in the
ordering. The actual way in which the comparison is done is based on
the Unicode standard. This standard assigns a number to virtually every
character one would ever need, including characters from Greek, Arabic,
Japanese, Tamil, and so on. Having such numbers is practical for storing
strings inside a computer — you can represent them as a list of numbers.
When comparing strings, CoffeeScript just compares the numbers of the
characters inside the string, from left to right.

8Note that there is no space between the unary minus and the value.

24



Basic CoffeeScript

Other similar operators are >= (‘is greater than or equal to’), <= (‘is less
than or equal to’), == (‘is equal to’), and != (‘is not equal to’). Equal to
can also be written in text as is and not equal to as isnt.
'Itchy' isnt 'Scratchy'

◦ • ◦
There are also some useful operations that can be applied to boolean values
themselves. CoffeeScript supports three logical operators: and, or, and
not. These can be used to ‘reason’ about booleans.
The logical and operator can also be written as &&. It is a binary operator,
and its result is only true if both of the values given to it are true.
true and false

Logical or with alias ||, is true if either of the values given to it is true:
true or false

not can be written as an exclamation mark, !, it is a unary operator that
flips the value given to it, !true is false, and not false is true.

Exercise 1

((4 >= 6) || ('grass' != 'green')) &&
!(((12 * 2) == 144) && true)

Is this true? For readability, there are a lot of unnecessary parentheses
in there. This simple version means the same thing:
(4 >= 6 or 'grass' isnt 'green') and
not(12 * 2 is 144 and true)

It is not always obvious when parentheses are needed. In practice, one
can usually get by with knowing that of the operators we have seen so
far, or has the lowest precedence, then comes and, then the comparison
operators (>, ==, etcetera), and then the rest. This has been chosen in such
a way that, in simple cases, as few parentheses as possible are necessary.

◦ • ◦

25



Basic CoffeeScript

All the examples so far have used the language like you would use a pocket
calculator. Make some values and apply operators to them to get new
values. Creating values like this is an essential part of every CoffeeScript
program, but it is only a part. A piece of code that produces a value is
called an expression. Every value that is written directly (such as 22 or
'psychoanalysis') is an expression. An expression between parentheses
is also an expression. And a binary operator applied to two expressions,
or a unary operator applied to one, is also an expression.
There are a few more ways of building expressions, which will be revealed
when the time is ripe.
There exists a unit that is bigger than an expression. It is called a statement.
A program is built as a list of statements. Most statements end with a
newline, although a statement can stretch over many lines. Statements can
also end with a semicolon (;). In CoffeeScript semicolon is mostly used if
you want to place multiple statements on the same line. The simplest kind
of statement is an expression with a semicolon after it. This is a program:
1; !false

It is a useless program. An expression can be content to just produce a
value, but a statement only amounts to something if it somehow changes
the world. It could print something to the screen — that counts as changing
the world — or it could change the internal state of the program in a way
that will affect the statements that come after it. These changes are called
‘side effects’. The statements in the example above just produce the values
1 and true, and then immediately throw them into the bit bucket9. This
leaves no impression on the world at all, and is not a side effect.

◦ • ◦
How does a program keep an internal state? How does it remember things?
We have seen how to produce new values from old values, but this does
not change the old values, and the new value has to be immediately used
or it will dissipate again. To catch and hold values, CoffeeScript provides
a thing called a variable.
caught = 5 * 5

9The bit bucket is supposedly the place where old bits are kept. On some systems,
the programmer has to manually empty it now and then. Fortunately, CoffeeScript
comes with a fully-automatic bit-recycling system.

26



Basic CoffeeScript

A variable always has a name, and it can point at a value, holding on to it.
The statement above creates a variable called caught and uses it to grab
hold of the number that is produced by multiplying 5 by 5.
After running the above program, you can type the word caught into the
console, and it will retrieve the value 25 for you. The name of a variable
is used to fetch its value. caught + 1 also works. A variable name can
be used as an expression, and thus can be part of bigger expressions.
Assigning a value to a new variable name with the = operator, creates the
new variable. Variable names can be almost every word, but they may not
include spaces. Digits can be part of variable names, catch22 is a valid
name, but the name must not start with one. The characters ‘$’ and ‘_’ can
be used in names as if they were letters, so $_$ is a correct variable name.
When a variable points at a value, that does not mean it is tied to that value
forever. At any time, the = operator can be used on existing variables to
yank them away from their current value and make them point to a new
one.
caught = 4 * 4

◦ • ◦
You should imagine variables as tentacles, rather than boxes. They do not
contain values, they grasp them — two variables can refer to the same
value. Only the values that the program still has a hold on can be accessed
by it. When you need to remember something, you grow a tentacle to
hold on to it, or re-attach one of your existing tentacles to a new value: To
remember the amount of dollars that Luigi still owes you, you could do…
luigiDebt = 140

Then, every time Luigi pays something back, this amount can be decre-
mented by giving the variable a new number:
luigiDebt = luigiDebt - 35

The collection of variables and their values that exist at a given time is
called the environment. When a program starts up, this environment is not
empty. It always contains a number of standard variables. When you use
coffee to execute a CoffeeScript program or run the interactive environ-
ment with coffee -r ./prelude then the environment is called global.
You can view it by typing: →| / ‘Tab’. When your browser loads a page,

27



Basic CoffeeScript

it creates a new environment called window and attaches these standard
values to it. The variables created and modified by programs on that page
survive until the browser goes to a new page.

◦ • ◦
A lot of the values provided by the standard environment have the type
‘function’. A function is a piece of program wrapped in a value. Gener-
ally, this piece of program does something useful, which can be evoked
using the function value that contains it. In the development environment,
the variable show holds a function that shows a message in the terminal or
command line window. You can use it like this:
show 'Also, your hair is on fire.'

Executing the code in a function is called invoking or applying it. The
notation for doing this is the function name followed by parentheses or a
comma separated list of values. Every expression that produces a func-
tion value can be invoked by putting parentheses after it. The parentheses
can be left out when values are passed. The string value is given to the
function, which uses it as the text to show in the console window. Values
given to functions are called parameters or arguments. show needs only
one of them, but other functions might need a different number.

◦ • ◦
Showing a message is a side effect. A lot of functions are useful because
of the side effects they produce. It is also possible for a function to produce
a value, in which case it does not need to have a side effect to be useful.
For example, there is a function Math.max, which takes two arguments
and gives back the biggest of the two:
show Math.max 2, 4

When a function produces a value, it is said to return it. Because things
that produce values are always expressions in CoffeeScript, function calls
can be used as a part of bigger expressions:
show 100 + Math.max 7, 4
show Math.max(7, 4) + 100
show Math.max(7, 4 + 100)
show Math.max 7, 4 + 100

28



Basic CoffeeScript

When parentheses are left out from a function call then CoffeeScript im-
plicitly inserts them stretching to the end of the line. In the example above
it means that the first two lines gives the answer 107 and the last two 104.
So depending on your intention you may have to use parentheses to get
the result you want. Functions discusses writing your own functions.

◦ • ◦
As the previous examples illustrated, show can be useful for showing the
result of an expression. show is not a standard CoffeeScript function,
browsers do not provide it for you, it is made available by the Smooth Coffee-
Script prelude. When you are working in a web browser, you have a different
environment and can instead use alert to pop up a dialog with a message.
We will continue in the CoffeeScript environment. show tries to display
its argument the way it would look in a program, which can give more
information about the type of a value. In an interactive console, started
with coffee -r ./prelude, you can explore the environment:
show process
show console
show _
show show

What the output means is not so important for now. show is a tool that can
give you details on the things in your programs, which can be handy later,
if something does not behave the way you had expected.

◦ • ◦
The environment provided by browsers contains a few more functions for
popping up windows. You can ask the user an OK/Cancel question using
confirm. This returns a boolean, true if the user presses ‘OK’, and false
if he presses ‘Cancel’. The prelude has a similar confirm function where
the user is asked yes or no to the question.
Since the CoffeeScript environment is optimized to run as a server, it does
not wait for the user to reply. Instead it continues running the code follow-
ing the function call. Eventually when the user has answered the question,
then a function given as an argument is called with the answer. This piece
of code involves a bit of magic, that will be explained in Functions. While it
is more complicated for this use, we will in later chapters see that it makes
perfect sense for a web application with many users.

29



Basic CoffeeScript

confirm 'Shall we, then?', (answer) -> show answer

prompt can be used to ask an ‘open’ question. The first argument is the
question, the second one is the text that the user starts with. A line of
text can be typed into the window, and the function will — in a browser
— return this as a string. As with confirm the prelude offers a similar
function, that takes a third argument which will receive the answer.
prompt 'Tell us everything you know.', '...',

(answer) -> show 'So you know: ' + answer

◦ • ◦
It is possible to give almost every variable in the environment a new value.
This can be useful, but also dangerous. If you give show the value 8, you
will not be able to show things anymore. Some functions like confirm and
prompt works when you run your program from a file, but interact poorly
with the interactive environment. Fortunately, you can stop a program
with CTRL-C and pick up where you left off.

◦ • ◦
One-line programs are not very interesting. When you put more than one
statement into a program, the statements are, predictably, executed one at
a time, from top to bottom.
prompt 'Pick a number', '', (answer) ->

theNumber = Number answer
show 'Your number is the square root of ' +

(theNumber * theNumber)

The function Number converts a value to a number, which is needed in this
case because the answer from prompt is a string value. There are similar
functions called String and Boolean which convert values to those types.

◦ • ◦
Consider a program that prints out all even numbers from 0 to 12. One
way to write this is:
show 0
show 2
show 4
show 6
show 8
show 10
show 12

30



Basic CoffeeScript

That works, but the idea of writing a program is to make something less
work, not more. If we needed all even numbers below 1000, the above
would be unworkable. What we need is a way to automatically repeat
some code.
currentNumber = 0
while currentNumber <= 12

show currentNumber
currentNumber = currentNumber + 2

You may have seen while in the Introduction chapter. A statement starting
with the word while creates a loop. A loop is a disturbance in the sequence
of statements, it may cause the program to repeat some statements multiple
times. In this case, the word while is followed by an expression, which
is used to determine whether the loop will loop or finish. As long as the
boolean value produced by this expression is true, the code in the loop
is repeated. As soon as it is false, the program goes to the bottom of the
loop and continues as normal.
The variable currentNumber demonstrates the way a variable can track the
progress of a program. Every time the loop repeats, it is incremented by
2, and at the beginning of every repetition, it is compared with the number
12 to decide whether to keep on looping.
The third part of a while statement is another statement. This is the body
of the loop, the action or actions that must take place multiple times. In-
dentation is used to group statements into blocks. To the world outside the
block, a block counts as a single statement. In the example, this is used
to include in the loop both the call to show and the statement that updates
currentNumber.
If we did not have to print the numbers, the program could have been:
counter = 0

while counter <= 12 then counter = counter + 2

Here, counter = counter + 2 is the statement that forms the body of the
loop. The then keyword separates the boolean from the body, so both can
be on the same line.

31



Basic CoffeeScript

Exercise 2
Use the techniques shown so far to write a program that calculates and
shows the value of 210 (2 to the 10th power). You are, obviously, not
allowed to use a cheap trick like just writing 2 * 2 * ...

If you are having trouble with this, try to see it in terms of the even-
numbers example. The program must perform an action a certain
amount of times. A counter variable with a while loop can be used
for that. Instead of printing the counter, the program must multiply
something by 2. This something should be another variable, in which
the result value is built up.
Do not worry if you do not quite see how this would work yet. Even
if you perfectly understand all the techniques this chapter covers, it
can be hard to apply them to a specific problem. Reading and writing
code will help develop a feeling for this, so study the solution, and try
the next exercise.

Exercise 3
With some slight modifications, the solution to the previous exercise
can be made to draw a triangle. And when I say ‘draw a triangle’ I
mean ‘print out some text that almost looks like a triangle when you
squint’.
Print out ten lines. On the first line there is one ‘#’ character. On the
second there are two. And so on.
How does one get a string with X ‘#’ characters in it? One way is to
build it every time it is needed with an ‘inner loop’ — a loop inside a
loop. A simpler way is to reuse the string that the previous iteration
of the loop used, and add one character to it.

You will have noticed the spaces I put in front of some statements. These
are required: The level of indentation decides which block a line belongs
to. The role of the indentation inside blocks is to make the structure of the
code clearer to a reader. Because new blocks can be opened inside other
blocks, it can become hard to see where one block ends and another begins
if they were not indented. When lines are indented, the visual shape of a

32



Basic CoffeeScript

program corresponds to the shape of the blocks inside it. I like to use two
spaces for every open block, but tastes differ. If a line becomes too long,
then you can split it between two words or place a \ at the end of the line
and continue on the next.

◦ • ◦
The uses of while we have seen so far all show the same pattern. First, a
‘counter’ variable is created. This variable tracks the progress of the loop.
The while itself contains a check, usually to see whether the counter has
reached some boundary yet. Then, at the end of the loop body, the counter
is updated.
A lot of loops fall into this pattern. For this reason, CoffeeScript, and
similar languages, also provide a slightly shorter and more comprehensive
form:
for number in [0..12] by 2 then show number

This program is exactly equivalent to the earlier even-number-printing ex-
ample. The only change is that all the statements that are related to the
‘state’ of the loop are now on one line. The numbers in square brackets
are a range [4..7], a list of numbers starting from the first number and
going up one by one to the last. A range with two dots includes the last
number in the list (4,5,6,7), with three dots [4...7] the last number is
excluded (4,5,6). The amount of each step can be changed with the by
keyword. So [2..6] by 2 gives the list (2,4,6). Ranges can also decre-
ment if the first number is largest, or involve negative numbers or floating
point numbers.
The number in the for comprehension take on each successive value from
the range during each turn through the loop. The number value is then
available in the loop body where it can be used in computations or as here
in show number. In most cases this is shorter and clearer than a while
construction.
The for comprehension can take on other forms as well. One is that the
body of the loop can be given before the for statement.
# For with indented body
for number in [0..12] by 2

show number

# For with prepended body
show number for number in [0..12] by 2

33



Basic CoffeeScript

◦ • ◦
The lines that starts with ‘#’ in the previous example might have looked a
bit suspicious to you. It is often useful to include extra text in a program.
The most common use for this is adding some explanations in human lan-
guage to a program.
# The variable counter, which is about to be defined,
# is going to start with a value of 0, which is zero.
counter = 0
# Now, we are going to loop, hold on to your hat.
while counter < 100 # counter is less than one hundred

###
Every time we loop, we INCREMENT the value of counter
Seriously, we just add one to it.
###
counter++

# And then, we are done.

This kind of text is called a comment. The rules are like this: ‘#’ starts
a comment, which goes on until the end of the line. ‘###’ starts another
kind of comment that goes on until a ‘###’ is found so it can stretch over
multiple lines.
As you can see, even the simplest programs can be made to look big, ugly,
and complicated by simply adding a lot of comments to them.

◦ • ◦
I have been using some rather odd capitalisation in some variable names.
Because you can not have spaces in these names — the computer would
read them as two separate variables — your choices for a name that is
made of several words are more or less limited to the following:

fuzzylittleturtle FuzzyLittleTurtle
fuzzy_little_turtle fuzzyLittleTurtle

The first one is hard to read. Personally, I like the one with the underscores,
though it is a little painful to type. However, since CoffeeScript evolved
from JavaScript, most CoffeeScript programmers follow the JavaScript
convention with the last one. Its the one used by the standard JavaScript
functions. It is not hard to get used to little things like that, so I will just
follow the crowd and capitalise the first letter of every word after the first.

34



Basic CoffeeScript

In a few cases, such as the Number function, the first letter of a variable
is also capitalised. This was done to mark this function as a constructor.
What a constructor is will become clear in Object Orientation. For now, the
important thing is not to be bothered by this apparent lack of consistency.

◦ • ◦
Note that names that have a special meaning, such as while, and for may
not be used as variable names. These are called keywords. There are also
a number of words which are ‘reserved for use’ in future versions of Java-
Script and CoffeeScript. These are also officially not allowed to be used
as variable names, though some environments do allow them. The full list
in Reserved Words is rather long.
Do not worry about memorising these for now, but remember that this
might be the problem when something does not work as expected. In my
experience, char (to store a one-character string) and class are the most
common names to accidentally use.

Exercise 4
Rewrite the solutions of the previous two exercises to use for instead
of while.

A program often needs to ‘update’ a variable with a value that is based on
its previous value. For example counter = counter + 1. CoffeeScript
provides a shortcut for this: counter += 1. This also works for many
other operators, for example result *= 2 to double the value of result,
or counter -= 1 to count downwards. counter++ and counter-- are
shorter versions of counter += 1 and counter -= 1.

◦ • ◦
Loops are said to affect the control flow of a program. They change the
order in which statements are executed. In many cases, another kind of
flow is useful: skipping statements.
We want to show all numbers between 0 and 20 which are divisible both
by 3 and by 4.
for counter in [0..20]

if counter % 3 == 0 and counter % 4 == 0
show counter

35



Basic CoffeeScript

The keyword if is not too different from the keyword while: It checks
the condition it is given, and executes the statement after it based on this
condition. But it does this only once, so that the statement is executed
zero or one time.
The trick with the modulo (%) operator is an easy way to test whether a
number is divisible by another number. If it is, the remainder of their
division, which is what modulo gives you, is zero.
If we wanted to print all of the numbers between 0 and 20, but put paren-
theses around the ones that are not divisible by 4, we can do it like this:
for counter in [0..20]

if counter % 4 == 0
show counter

if counter % 4 != 0
show '(' + counter + ')'

But now the program has to determine whether counter is divisible by
4 two times. The same effect can be gotten by appending an else part
after an if statement. The else statement is executed only when the if’s
condition is false.
for counter in [0..20]

if counter % 4 == 0
show counter

else
show '(' + counter + ')'

To stretch this trivial example a bit further, we now want to print these
same numbers, but add two stars after them when they are greater than 15,
one star when they are greater than 10 (but not greater than 15), and no
stars otherwise.
for counter in [0..20]

if counter > 15
show counter + '**'

else if counter > 10
show counter + '*'

else
show counter

This demonstrates that you can chain if statements together. In this case,
the program first looks if counter is greater than 15. If it is, the two stars

36



Basic CoffeeScript

are printed and the other tests are skipped. If it is not, we continue to check
if counter is greater than 10. Only if counter is also not greater than 10
does it arrive at the last show statement.

Exercise 5
Write a program to ask yourself, using prompt, what the value of 2 +
2 is. If the answer is ‘4’, use show to say something praising. If it is
‘3’ or ‘5’, say ‘Almost!’. In other cases, say something mean. Refer
back to page 30 for the little bit of magic needed with prompt.

The logic tests in a program can become complicated. To help write condi-
tions clearly CoffeeScript provides a couple of variations on the if state-
ment: The body of an if statement can be placed before the condition.
And an if not can be written as unless .
fun = on
show 'The show is on!' unless fun is off

◦ • ◦
When a loop does not always have to go all the way through to its end,
the break keyword can be useful. It immediately jumps out of the current
loop, continuing after it. This program finds the first number that is greater
than 20 and divisible by 7:
current = 20
loop

if current % 7 == 0
break

current++
show current

The loop construct does not have a part that checks for the end of the loop.
It is the same as while true. This means that it is dependant on the break
statement inside it to ever stop. The same program could also have been
written as simply…
current = 20
current++ until current % 7 == 0
show current

37



Basic CoffeeScript

In this case, the body of the loop comes before the loop test. The until
keyword is similar to the unless keyword, but translates into while not.
The only effect of the loop is to increment the variable current to its
desired value. But I needed an example that uses break, so pay attention
to the first version too.

Exercise 6
Pick a lucky number from 1 to 6 then keep rolling a simulated die,
until your lucky number comes up. Count the number of rolls. Use a
loop and optionally a break. Casting a die can be simulated with:
roll = Math.floor Math.random() * 6 + 1

Note that loop is the same as while true and both can be used to cre-
ate a loop that does not end on its own account. Writing while true
is a useful trick but a bit silly, you ask the program to loop as long as
true is true, so the preferred way is to write loop.

In the second solution to the previous exercise roll has not been set to a
value the first time through the loop. It is only assigned a value in the next
statement. What happens when you take the value of this variable?
show mysteryVariable
mysteryVariable = 'nothing'

In terms of tentacles, this variable ends in thin air, it has nothing to grasp.
When you ask for the value of an empty place, you get a special value
named undefined. Functions which do not return an interesting value,
such as the built-in function console.log also return an undefined value.
Most things in CoffeeScript return a value, even most statements. The
prelude function show return the value it is given, so it can be used within
expressions.
show console.log 'I am a side effect.'

There is also a similar value, null, whose meaning is ‘this variable is
defined, but it does not have a value’. The difference in meaning between
undefined and null is mostly academic, and usually not very interesting.
In practical programs, it is often necessary to check whether something
‘has a value’. In these cases, the expression something? may be used,

38



Basic CoffeeScript

the ? is called the existential operator. It returns true unless something
is null or undefined. It also comes in an existential assignment form ?=
which will only assign to a variable that is either null or undefined.
show iam ? undefined
iam ?= 'I want to be'
show iam
iam ?= 'I am already'
show iam if iam?

◦ • ◦
Which brings us to another subject… If you have been exposed to Java-
Script then you know that comparisons of different types can be tricky.
show false == 0
show '' == 0
show '5' == 5

In JavaScript all these give the value true — not so in CoffeeScript where
they are all false. When comparing values that have different types, you
have to convert them into compatible types first. We saw this earlier with
Number so Number('5') == 5 gives true. The behaviour of == in Coffee-
Script is the same as === in JavaScript.
show `null === undefined`
show `false === 0`
show `'' === 0`
show `'5' === 5`

All these are false. You can embed JavaScript in CoffeeScript by sur-
rounding the JavaScript code with backquotes. Using JavaScript when
you have CoffeeScript is similar to embedding assembly language in a
high-level language. It should be something you very rarely need to do.

◦ • ◦
There are some other situations that cause automatic type conversions to
happen. If you add a non-string value to a string, the value is automatically
converted to a string before it is concatenated. If you multiply a number
and a string, CoffeeScript tries to make a number out of the string.
show 'Apollo' + 5
show null + 'ify'
show '5' * 5
show 'strawberry' * 5

39



Basic CoffeeScript

The last statement prints NaN, which is a special value. It stands for ‘not a
number’, and is of type number (which might sound a little contradictory).
In this case, it refers to the fact that a strawberry is not a number. All arith-
metic operations on the value NaN result in NaN, which is why multiplying
it by 5, as in the example, still gives a NaN value. Also, and this can be
disorienting at times, NaN == NaN equals false, checking whether a value
is NaN can be done with the isNaN function.
These automatic conversions can be very convenient, but they are also
rather weird and error prone. Even though + and * are both arithmetic
operators, they behave completely different in the example. In my own
code, I use + on non-strings a lot, but make it a point not to use * and the
other numeric operators on string values.
Converting a number to a string is always possible and straightforward,
but converting a string to a number may not even work (as in the last line
of the example). We can use Number to explicitly convert the string to a
number, making it clear that we might run the risk of getting a NaN value.
show Number('5') * 5

◦ • ◦
When we discussed the boolean operators && and || earlier, I claimed
they produced boolean values. This turns out to be a bit of an oversim-
plification. If you apply them to boolean values, they will indeed return
booleans. But they can also be applied to other kinds of values, in which
case they will return one of their arguments.
What || really does is this: It looks at the value to the left of it first. If
converting this value to a boolean would produce true, it returns this left
value, and otherwise it returns the one on its right. Check for yourself that
this does the correct thing when the arguments are booleans. Why does it
work like that? It turns out this is very practical. Consider this example:
prompt 'What is your name?', '',

(input) ->
show 'Well hello ' + (input || 'dear')

If the user presses←↩ / ‘Enter’ without giving a name, the variable input
will hold the value ''. This would give falsewhen converted to a boolean.
The expression input || 'dear' can in this case be read as ‘the value of
the variable input, or else the string 'dear'’. It is an easy way to provide
a ‘fallback’ value.

40



Basic CoffeeScript

The && operator works similarly, but the other way around. When the
value to its left is something that would give false when converted to
a boolean, it returns that value, and otherwise it returns the value on its
right.
Another property of these two operators is that the expression to their right
is only evaluated when necessary. In the case of true || X, no matter
what X is, the result will be true, so X is never evaluated, and if it has side
effects they never happen. The same goes for false && X.
false || alert 'I am happening!'
true || alert 'Not me.'

41



Functions

A program often needs to do the same thing in different places. Repeating
all the necessary statements every time is tedious and error-prone. It would
be better to put them in one place, and have the program take a detour
through there whenever necessary. This is what functions were invented
for: They are canned code that a program can go through whenever it
wants. Putting a string on the screen requires quite a few statements, but
when we have a show function we can just write show 'Aleph' and be
done with it.
To view functions merely as canned chunks of code does not do them
justice though. When needed, they can play the role of pure functions,
algorithms, indirections, abstractions, decisions, modules, continuations,
data structures, and more. Being able to effectively use functions is a nec-
essary skill for any kind of serious programming. This chapter provides
an introduction into the subject, Functional Programming discusses the subtleties
of functions in more depth.

◦ • ◦
Pure functions, for a start, are the things that were called functions in the
mathematics classes that I hope you have been subjected to at some point
in your life. Taking the cosine or the absolute value of a number is a pure
function of one argument. Addition is a pure function of two arguments.
The defining properties of pure functions are that they always return the
same value when given the same arguments, and never have side effects.
They take some arguments, return a value based on these arguments, and
do not monkey around with anything else.
In CoffeeScript, addition is an operator, but it could be wrapped in a func-
tion like this (and as pointless as this looks, we will come across situations
where it is actually useful):
add = (a, b) -> a + b
show add 2, 2

42



Functions

add is the name of the function. a and b are the names of the two argu-
ments. a + b is the body of the function.
The construct -> is used when creating a new function. When it is assigned
to a variable name, the resulting function will be stored under this name.
Before the -> comes a list of argument names in parentheses. If a function
does not take any arguments, then the parentheses are not needed. After
the -> follows the body of the function. The body can follow the -> on
the same line or indented on the following line.
The last statement in a function determines its value. The keyword return,
followed by an expression, can also be used to determine the value the
function returns. When control comes across a return statement, it im-
mediately jumps out of the current function and gives the returned value
to the code that called the function. A return statement without an ex-
pression after it will cause the function to return undefined.
A body can, of course, have more than one statement in it. Here is a
function for computing powers (with positive, integer exponents):
power = (base, exponent) ->

result = 1
for count in [0...exponent]

result *= base
result

show power 2, 10

If you solved the exercise on page 32, this technique for computing a
power should look familiar. Creating a variable (result) and updating
it are side effects. Did I not just say pure functions had no side effects? A
variable created inside a function exists only inside the function. This is
fortunate, or a programmer would have to come up with a different name
for every variable he needs throughout a program. Because result only
exists inside power, the changes to it only last until the function returns,
and from the perspective of code that calls it there are no side effects.

Exercise 7
Write a function called absolute, which returns the absolute value of
the number it is given as its argument. The absolute value of a negative
number is the positive version of that same number, and the absolute
value of a positive number (or zero) is that number itself.

43



Functions

Pure functions have two very nice properties. They are easy to think about,
and they are easy to re-use.
If a function is pure, a call to it can be seen as a thing in itself. When
you are not sure that it is working correctly, you can test it by calling
it directly from the console, which is simple because it does not depend
on any context10. It is easy to make these tests automatic — to write a
program that tests a specific function. Non-pure functions might return
different values based on all kinds of factors, and have side effects that
might be hard to test and think about.
Because pure functions are self-sufficient, they are likely to be useful and
relevant in a wider range of situations than non-pure ones. Take show, for
example. This function’s usefulness depends on the presence of a special
place on the screen for printing output. If that place is not there, the func-
tion is useless. We can imagine a related function, let’s call it format, that
takes a value as an argument and returns a string that represents this value.
This function is useful in more situations than show.
Of course, format does not solve the same problem as show, and no pure
function is going to be able to solve that problem, because it requires a side
effect. In many cases, non-pure functions are precisely what you need. In
other cases, a problem can be solved with a pure function but the non-pure
variant is much more convenient or efficient.
Thus, when something can easily be expressed as a pure function, write it
that way. But never feel dirty for writing non-pure functions.

◦ • ◦
How do we make sure that a function gives the result that we expect? In the
last exercise we tried with absolute -144 and got the answer we wanted.
For a simple function that is likely enough, but functions quickly become
much more complicated and it becomes difficult to predict the output just
from reading the program text. To reassure ourselves that absolute ac-
tually works many more test cases are needed. But typing test case after
test case very quickly becomes very boring — so there must be a better
way…
10Technically, a pure function can not use the value of any external variables. These

values might change, and this could make the function return a different value for the
same arguments. In practice, the programmer may consider some variables ‘constant’
— they are not expected to change — and consider functions that use only constant
variables pure. Variables that contain a function value are often good examples of
constant variables.

44



Functions

The exercise described the properties that the function should have as:
‘The absolute value of a negative number is the positive version of that
same number, and the absolute value of a positive number (or zero) is
that number itself.’ This description can be turned into properties that the
computer can test for us.
testAbsolute = (name, property) ->

qc.testPure absolute, [qc.arbInt], name, property

The testAbsolute function calls on testPure in qc — qc stands for quick
check11 — and tells it in the first argument to test absolute. The next
argument, arbInt, declare that absolute takes an arbitrary integer as its
only argument. Don’t worry about the brackets and dots, they will be
explained in the next chapters. Calling testAbsolute with a descriptive
name and a property is all that is needed to tell what to expect of absolute.
testAbsolute 'returns positive integers',

(c, arg, result) -> result >= 0

First from the description of the function, clearly absolute should return
a value larger than or equal to zero. That is what result >= 0 in the prop-
erty says. A property here is a function which is given three arguments;
a test case (called c since case is a reserved word), the argument that
absolute was called with and the result it gave back. Based on these
values the property then returns true or false depending on whether the
function conformed to the property.
The description says: ‘the absolute value of a positive number (or zero) is
that number itself.’ So this property only needs positive numbers, a call to
guard can to tell qc to disregard values that are not positive. The property
then checks that the result is the same as the argument.
testAbsolute 'positive returns positive',

(c, arg, result) -> c.guard arg >= 0; result is arg

Almost the same goes for negative arguments, except we use unary minus
in the property.
testAbsolute 'negative returns positive',

(c, arg, result) -> c.guard arg < 0; result is -arg

11Koen Claessen and John Hughes from Chalmers University of Technology created
QuickCheck for Haskell and its ideas has since been reimplemented in many other
programming languages. The qc library is an implementation for JavaScript by Dar-
rin Thompson. A CoffeeScript compatible version is included in the prelude.

45



Functions

So far only the desired properties of the function has been declared. No
tests have been performed. Calling qc.test() starts the testing process,
qc then generates test data and checks the properties.
Pass: returns positive integers (pass=100, invalid=0)
Pass: positive returns positive (pass=100, invalid=103)
Pass: negative returns positive (pass=100, invalid=90)

That was nice. absolute has passed 300 test cases in the blink of an eye.
The invalid counts comes from the guard calls that throw away test cases.
If you want to see the test values then you can insert a show c.args in the
property.
So what does it look like if a test fails? The power function from earlier
in this chapter is a good candidate for a function that will fail to live up
to expectations. We could reasonably expect that power will behave the
same as the standard Math.pow function — but only for integers of course.
qc.testPure power, [qc.arbInt, qc.arbInt],

'power == Math.pow for integers',
(c, base, exponent, result) ->

result == c.note Math.pow base, exponent

Calling testPure and describing power as a function with two integer
arguments does that. The property is then declaring that the result from
power is the same as that from Math.pow. To see the value that Math.pow
returns, a call is made to c.note which registers the value it is given.
fail: power == Math.pow for integers
pass=9, invalid=0
shrinkedArgs=3,-2,9,0.1111111111111111
Failed case:
[ -9,

-9,
-387420489,
-2.581174791713197e-9 ]

That failed and qc shows why. The -9 and -9 in the last lines refer to
the arguments that qc generated for the test case. The -387420489 is the
result from power. The last number is the value noted from Math.pow, it
is a close approximation of the correct answer -9-9 = - 1

387420489
.

qc.testPure power, [qc.arbWholeNum, qc.arbWholeNum],
'power == Math.pow for positive integers',

46



Functions

(c, base, exponent, result) ->
result == c.note Math.pow base, exponent

The expectation that powerworks for integers was too broad, but surely the
functions will work the same for positive integers or what do you think?
Instead of using guard to throw away test cases as before, the descrip-
tion of the arguments can be changed. Many different argument types are
included in qc (ranges, strings, dates, lists, …) and there is also one for
positive integers, arbWholeNum.
fail: power == Math.pow for positive integers
pass=28, invalid=0
shrinkedArgs=9,18,150094635296999100,150094635296999140
Failed case:
[ 27,

27,
4.434264882430377e+38,
4.434264882430378e+38 ]

Well it passed 28 tests before a test case for 2727 gave a difference on the
last digit12. Notice the line with shrinkedArgs. When a test fails then qc
tries to find a simpler test that reproduces the problem. Simpler can mean
shorter strings, lists or in this case smaller numbers. So qc found that
there was a difference already for 918. The result from power ends with
100 and from Math.pow with 140. So which is correct? None of them13:
918 = 150094635296999121.

Exercise 8
Copy the following program and modify the function intensify until
it passes the test properties. You can find descriptions of many qc
definitions such as arbConst in the qc reference on page 206. From
the prelude c.noteVerbose can help by both recording a result if the
test fails and displaying values as they are tested.

12The ECMAScript standard allows these deviations for JavaScript and thus for Coffee-
Script. If you should need unlimited precision integers then either use a third party
library or a more mathematically inclined programming language such as Pure.

13The LYX authoring environment used to create this book integrates with Maxima, the
source of this result. Maxima is a computer algebra system that does symbolic and
unlimited precision calculations.

47



Functions

require './prelude'

intensify = (n) ->
2

qc.testPure intensify, [qc.arbInt],
'intensify grows by 2 when positive',
(c, arg, result) ->

c.guard arg > 0
arg + 2 == result

qc.testPure intensify, [qc.arbInt],
'intensify grows by 2 when negative',
(c, arg, result) ->

c.guard arg < 0
arg - 2 == result

qc.testPure intensify, [qc.arbConst(0)],
'only non-zero intensify grows',
(c, arg, result) ->

result is 0

qc.test()

Writing test declarations before writing a function can be a good way of
specifying it. The test declarations in these examples are much larger than
the functions they are testing. In Binary Heaps is a more realistic example of a
class and tests for it. Declarative testing is well suited to testing algorithms
and reusable libraries. There are many other test tools that you can choose
depending on your preference and task14. The main point here is that a
reasonable level of testing is part of writing code.

◦ • ◦
Back to functions, they do not have to contain a return statement. If no
return statement is encountered, the function returns the value of the last
statement. The prelude function show returns its argument so that it can
14Most JavaScript test tools are compatible with CoffeeScript or can easily be adapted.

48



Functions

be used inside expressions. If you want the function to return undefined
then the last statement can be a return.
yell = (message) ->

show message + '!!'
return

yell 'Yow'

◦ • ◦
The names of the arguments of a function are available as variables in-
side it. They will refer to the values of the arguments the function is being
called with, and like normal variables created inside a function, they do not
exist outside it. Aside from the top-level environment, there are smaller,
local environments created by functions. When looking up a variable in-
side a function, the outer environment is checked first, and only if the
variable does not exist there is it created in the local environment.
dino = 'I am alive'
reptile = 'I am A-OK'
meteor = (reptile) ->

show reptile # Argument
dino = 'I am extinct'
reptile = 'I survived'
possum = 'I am new'

show dino # Outer
meteor 'What happened?'
show dino # Outer changed
show reptile # Outer unchanged
try show possum catch e

show e.message # Error undefined

This makes it possible for arguments to a function to ‘shadow’ outer level
variables that have the same name. The easiest way to deal with variables
is to use unique names for variables throughout a file. In Modularity you
will see that the top-level is not shared between files unless variables are
specifically exported.

49



Functions

So if the name of variable in an inner function exists in an outer envi-
ronment then the variable is referring to the outer one, it is not a new
definition. That is an expression like variable = 'something' may be
a definition of a new variable or it may be an assignment to a previously
defined variable. As a matter of style, when you are using top-level vari-
ables then it makes sense to introduce them at the top of a file with a default
value.
variable = 'first' # Definition

showVariable = ->
show 'In showVariable, the variable holds: ' +

variable # second

test = ->
variable = 'second' # Assignment
show 'In test, the variable holds ' +

variable + '.' # second
showVariable()

show 'The variable is: ' + variable # first
test()
show 'The variable is: ' + variable # second

The variables defined in the local environment are only visible to the code

50



Functions

inside the function. If a function calls another function, the newly called
function does not see the variables inside the first function.
andHere = ->

try show aLocal # Not defined
catch e then show e.message

isHere = ->
aLocal = 'aLocal is defined'
andHere()

isHere()

However, and this is a subtle but extremely useful phenomenon, when a
function is defined inside another function, its local environment will be
based on the local environment that surrounds it.
isHere = ->

andHere = ->
try show aLocal # Is defined
catch e then show e.message

aLocal = 'aLocal is defined'
andHere()

isHere()

◦ • ◦
Here is a special case that might surprise you:
varWhich = 'top-level'
parentFunction = ->

varWhich = 'local'
childFunction = ->

show varWhich
childFunction

child = parentFunction()
child()

parentFunction returns its internal function, and the code at the bottom
calls this function. Even though parentFunction has finished executing at
this point, the local environment where variable has the value 'local'
still exists, and childFunction still uses it. This phenomenon is called
closure.

◦ • ◦

51



Functions

With scoping we can ‘synthesise’ functions. By using some of the vari-
ables from an enclosing function, an inner function can be made to do
different things. Imagine we need a few different but similar functions,
one that adds 2 to its argument, one that adds 5, and so on.
makeAddFunction = (amount) ->

add = (number) -> number + amount

addTwo = makeAddFunction 2
addFive = makeAddFunction 5
show addTwo(1) + addFive(1)

◦ • ◦
On top of the fact that different functions can contain variables of the same
name without getting tangled up, these scoping rules also allow functions
to call themselves without running into problems. A function that calls it-
self is called recursive. Recursion allows for some interesting definitions.
When you define recursive functions the first thing you need is a stop con-
dition, otherwise your recursive function becomes an elaborate but never
ending loop. Look at this implementation of power:
powerRec = (base, exponent) ->

if exponent == 0
1

else
base * powerRec base, exponent - 1

show 'power 3, 3 = ' + powerRec 3, 3

This is rather close to the way mathematicians define exponentiation, and
to me it looks a lot nicer than the earlier version. It sort of loops, but there
is no while, for, or even a local side effect to be seen. By calling itself, the
function produces the same effect. The stop condition is when exponent
becomes 0 and the exponent - 1 ensures that exponent gets closer to 0
for each call. Note the assumption that exponent is a positive integer, that
should be clearly documented if powerRec was a part of a reusable library.

◦ • ◦
Does this elegance affect performance? There is only one way to know for
sure: measure it. The timings below are from my machine, you should not
rely much on those. CPU’s, operating systems, compilers and interpreters
in browsers all has an effect on performance, so measure in something that
is as close to your target environment as possible.

52



Functions

timeIt = (func) ->
start = new Date()
for i in [0...1000000] then func()
show "Timing: #{(new Date() - start)*0.001}s"

timeIt -> p = add 9,18 # 0.042s
timeIt -> p = Math.pow 9,18 # 0.049s
timeIt -> p = power 9,18 # 0.464s
timeIt -> p = powerRec 9,18 # 0.544s

The dilemma of speed versus elegance is an interesting one. It not only
occurs when deciding for or against recursion. In many situations, an
elegant, intuitive, and often short solution can be replaced by a more con-
voluted but faster solution.
In the case of the power function above the un-elegant version is still suf-
ficiently simple and easy to read. It does not make very much sense to re-
place it with the recursive version. Often, though, the concepts a program
is dealing with get so complex that giving up some efficiency in order to
make the program more straightforward becomes an attractive choice.
The basic rule, which has been repeated by many programmers and with
which I wholeheartedly agree, is to not worry about efficiency until your
program is provably too slow. When it is, find out which parts are too
slow, and start exchanging elegance for efficiency in those parts.
Of course, the above rule does not mean one should start ignoring per-
formance altogether. In many cases, like the power function, not much
simplicity is gained by the ‘elegant’ approach. In other cases, an expe-
rienced programmer can see right away that a simple approach is never
going to be fast enough.
The reason I am making a big deal out of this is that surprisingly many
programmers focus fanatically on efficiency, even in the smallest details.
The result is bigger, more complicated, and often less correct programs,
which take longer to write than their more straightforward equivalents and
often run only marginally faster.
When you have a simple, correct implementation that is too slow, then
you can use that as a reference implementation to test your improved ver-
sion. The one thing you do need to consider up front is what kind of data
structures and algorithms can handle the task at hand. There is a huge dif-
ference between searching in a list with ten items and searching in a list

53



Functions

with millions of items. These kind of considerations are covered in more
detail in Searching.

◦ • ◦
But I was talking about recursion. A concept closely related to recursion
is a thing called the stack. When a function is called, control is given to
the body of that function. When that body returns, the code that called
the function is resumed. While the body is running, the computer must
remember the context from which the function was called, so that it knows
where to continue afterwards. The place where this context is stored is
called the stack.
The fact that it is called ‘stack’ has to do with the fact that, as we saw, a
function body can again call a function. Every time a function is called,
another context has to be stored. One can visualise this as a stack of con-
texts. Every time a function is called, the current context is thrown on top
of the stack. When a function returns, the context on top is taken off the
stack and resumed.
This stack requires space in the computer’s memory to be stored. When
the stack grows too big, the computer will give up with a message like
“out of stack space” or “too much recursion”. This is something that has
to be kept in mind when writing recursive functions.
chicken = ->

show 'Lay an egg'
egg()

egg = ->
show 'Chick hatched'
chicken()

try show chicken() + ' came first.'
catch error then show error.message

In addition to demonstrating a very interesting way of writing a broken
program, this example shows that a function does not have to call itself
directly to be recursive. If it calls another function which (directly or indi-
rectly) calls the first function again, it is still recursive. The try and catch
parts are covered in Error Handling.

◦ • ◦
Recursion is not always just a less-efficient alternative to looping. Some
problems are much easier to solve with recursion than with loops. Most of-
ten these are problems that require exploring or processing several ‘branch-
es’, each of which might branch out again into more branches.

54



Functions

Consider this puzzle: By starting from the number 1 and repeatedly either
adding 5 or multiplying by 3, an infinite amount of new numbers can be
produced. How would you write a function that, given a number, tries to
find a sequence of additions and multiplications that produce that number?
For example, the number 13 could be reached by first multiplying 1 by 3,
and then adding 5 twice. The number 15 can not be reached at all.
findSequence = (goal) ->

find = (start, history) ->
if start == goal

history
else if start > goal

null
else

find(start + 5, '(' + history + ' + 5)') ? \
find(start * 3, '(' + history + ' * 3)')

find 1, '1'
show findSequence 24

Note that the solution does not necessarily find the shortest sequence of
operations, it is satisfied when it finds any sequence at all.
The inner find function, by calling itself in two different ways, explores
both the possibility of adding 5 to the current number and of multiplying
it by 3. When it finds the number, it returns the history string, which is
used to record all the operators that were performed to get to this number.
It also checks whether the current number is bigger than goal, because if
it is, we should stop exploring this branch, it is not going to give us our
number.
The use of the existential ? operator in the example can be read as ‘return
the solution found by adding 5 to start, and if that fails, return the solution
found by multiplying start by 3’.

◦ • ◦
Usually when you define a function you assign it to a name that you can
use to refer to it later. That is not required and sometimes it is not worth-
while to give a function a name, then you can use an anonymous function
instead.
Like in the makeAddFunction example we saw earlier:
makeAddFunction = (amount) ->

55



Functions

(number) -> number + amount

show makeAddFunction(11) 3

Since the function named add in the first version of makeAddFunction was
referred to only once, the name does not serve any purpose and we might
as well directly return the function value.

Exercise 9
Write a function greaterThan, which takes one argument, a number,
and returns a function that represents a test. When this returned func-
tion is called with a single number as argument, it returns a boolean:
true if the given number is greater than the number that was used to
create the test function, and false otherwise.

Try the following:
yell 'Hello', 'Good Evening', 'How do you do?'

The function yell defined earlier in this chapter only accepts one argu-
ment. Yet when you call it like this, the computer does not complain at
all, but just ignores the other arguments.
yell()

You can, apparently, even get away with passing too few arguments. When
an argument is not passed, its value inside the function is undefined.
In the next chapter, we will see a way in which a function body can get at
the exact list of arguments that were passed to it. This can be useful, as
it makes it possible to have a function accept any number of arguments.
console.log makes use of this:
console.log 'R', 2, 'D', 2

Of course, the downside of this is that it is also possible to accidentally pass
the wrong number of arguments to functions that expect a fixed amount
of them and never be told about it.

56



Data Structures: Objects and Arrays

This chapter will be devoted to solving a few simple problems. In the
process, we will discuss two new types of values, arrays and objects, and
look at some techniques related to them.
Consider the following situation: Your crazy aunt Emily, who is rumoured
to have over fifty cats living with her (you never managed to count them),
regularly sends you e-mails to keep you up to date on her exploits. They
usually look like this:

Dear nephew,
Your mother told me you have taken up skydiving. Is this true?
You watch yourself, young man! Remember what happened
to my husband? And that was only from the second floor!
Anyway, things are very exciting here. I have spent all week
trying to get the attention of Mr. Drake, the nice gentleman
who moved in next door, but I think he is afraid of cats. Or
allergic to them? I am going to try putting Fat Igor on his
shoulder next time I see him, very curious what will happen.
Also, the scam I told you about is going better than expected.
I have already gotten back five ‘payments’, and only one com-
plaint. It is starting to make me feel a bit bad though. And
you are right that it is probably illegal in some way.
(… etc …)
Much love,
Aunt Emily
died 27/04/2006: Black Leclère
born 05/04/2006 (mother Lady Penelope): Red Lion, Doctor
Hobbles the 3rd, Little Iroquois

To humour the old dear, you would like to keep track of the genealogy
of her cats, so you can add things like “P.S. I hope Doctor Hobbles the
2nd enjoyed his birthday this Saturday!”, or “How is old Lady Penelope

57



Data Structures

doing? She’s five years old now, isn’t she?”, preferably without acciden-
tally asking about dead cats. You are in the possession of a large quantity
of old e-mails from your aunt, and fortunately she is very consistent in
always putting information about the cats’ births and deaths at the end of
her mails in precisely the same format.
You are hardly inclined to go through all those mails by hand. Fortunately,
we were just in need of an example problem, so we will try to work out
a program that does the work for us. For a start, we write a program that
gives us a list of cats that are still alive after the last e-mail.
Before you ask, at the start of the correspondence, aunt Emily had only a
single cat: Spot. (She was still rather conventional in those days.)

It usually pays to have some kind of clue what one’s program is going to
do before starting to type. Here’s a plan:

1. Start with a set of cat names that has only “Spot” in it.
2. Go over every e-mail in our archive, in chronological order.
3. Look for paragraphs that start with “born” or “died”.
4. Add the names from paragraphs that start with “born” to our set of

names.
5. Remove the names from paragraphs that start with “died” from our

set.
Where taking the names from a paragraph goes like this:

1. Find the colon in the paragraph.
2. Take the part after this colon.
3. Split this part into separate names by looking for commas.

58



Data Structures

It may require some suspension of disbelief to accept that aunt Emily al-
ways used this exact format, and that she never forgot or misspelled a
name, but that is just how your aunt is.

◦ • ◦
First, let me tell you about properties. A lot of CoffeeScript values have
other values associated with them. These associations are called proper-
ties. Every string has a property called length, which refers to a number,
the amount of characters in that string.
Properties can be accessed in two ways:
text = 'purple haze'
show text['length']
show text.length

The second way is a shorthand for the first, and it only works when the
name of the property would be a valid variable name — when it does not
have any spaces or symbols in it and does not start with a digit character.
Numbers, booleans, the value null, and the value undefined do not have
any properties. Trying to read properties from such a value produces an
error. Try the following code, if only to get an idea about the kind of error-
message you get in such a case (which, for some browsers, can be rather
cryptic).
nothing = null
show nothing.length

The properties of a string value can not be changed. There are quite a few
more than just length, as we will see, but you are not allowed to add or
remove any.
This is different with values of the type object. Their main role is to hold
other values. They have, you could say, their own set of tentacles in the
form of properties. You are free to modify these, remove them, or add
new ones.
An object can be written like this:
cat =

colour: 'grey'
name: 'Spot'
size: 46

# Or: cat = {colour: 'grey', name: 'Spot', size: 46}

59



Data Structures

cat.size = 47
show cat.size
delete cat.size
show cat.size
show cat

Like variables, each property attached to an object is labelled by a string.
The first statement creates an object in which the property 'colour' holds
the string 'grey', the property 'name' is attached to the string 'Spot', and
the property 'size' refers to the number 46. The second statement gives
the property named size a new value, which is done in the same way as
modifying a variable.
The keyword delete cuts off properties. Trying to read a non-existent
property gives the value undefined.
If a property that does not yet exist is set with the = operator, it is added
to the object.
empty = {}
empty.notReally = 1000
show empty.notReally

Properties whose names are not valid variable names have to be quoted
when creating the object, and approached using brackets:
thing = {'gabba gabba': 'hey', '5': 10}
show thing['5']
thing['5'] = 20
show thing[2 + 3]
delete thing['gabba gabba']
show thing

As you can see, the part between the brackets can be any expression. It is
converted to a string to determine the property name it refers to. One can
even use variables to name properties:
propertyName = 'length'
text = 'mainline'
show text[propertyName]

The operator of can be used to test whether an object has a certain property.
It produces a boolean.
chineseBox = {}

60



Data Structures

chineseBox.content = chineseBox
show 'content' of chineseBox
show 'content' of chineseBox.content
show chineseBox

◦ • ◦
When object values are shown in the console, only the first few layers of
properties are shown. You can give an extra argument, depth, to show to
inspect more layers.
abyss = {let:1, us:go:deep:down:7}
show abyss
show abyss, 5

Exercise 10
The solution for the cat problem talks about a ‘set’ of names. A set is
a collection of values in which no value may occur more than once. If
names are strings, can you think of a way to use an object to represent
a set of names?
Show how a name can be added to this set, how one can be removed,
and how you can check whether a name occurs in it.

Object values, apparently, can change. The types of values discussed in
Basic CoffeeScript are all immutable, it is impossible to change an existing value
of those types. You can combine them and derive new values from them,
but when you take a specific string value, the text inside it can not change.
With objects, on the other hand, the content of a value can be modified by
changing its properties.
When we have two numbers, 120 and 120, they can for all practical pur-
poses be considered the precise same number. With objects, there is a
difference between having two references to the same object and having
two different objects that contain the same properties. Consider the fol-
lowing code:
object1 = {value: 10}
object2 = object1
object3 = {value: 10}

61



Data Structures

show object1 == object2
show object1 == object3

object1.value = 15
show object2.value
show object3.value

object1 and object2 are two variables grasping the same value. There is
only one actual object, which is why changing object1 also changes the
value of object2. The variable object3 points to another object, which
initially contains the same properties as object1, but lives a separate life.
CoffeeScript’s == operator, when comparing objects, will only return true
if both values given to it are the precise same value. Comparing differ-
ent object with identical contents will give false. This is useful in some
situations, but unpractical in others15.

◦ • ◦
Object values can play a lot of different roles. Behaving like a set is only
one of those. We will see a few other roles in this chapter, and Object Orientation
shows another important way of using objects.
In the plan for the cat problem — in fact, call it an algorithm, not a plan,
that makes it sound like we know what we are talking about — in the
algorithm, it talks about going over all the e-mails in an archive. What
does this archive look like? And where does it come from?
Do not worry about the second question for now. Modularity talks about some
ways to import data into your programs, but for now you will find that
the e-mails are just magically there. Some magic is really easy, inside
computers.

◦ • ◦
The way in which the archive is stored is still an interesting question. It
contains a number of e-mails. An e-mail can be a string, that should be
obvious. The whole archive could be put into one huge string, but that is
hardly practical. What we want is a collection of separate strings.
Collections of things are what objects are used for. One could make an
object like this:
15In the underscore library you can find a function isEqualwhich compares two objects

based on all layers of their contents.

62



Data Structures

mailArchive = {
'the first e-mail': 'Dear nephew, ...'
'the second e-mail': '...'
# and so on ...

}

But that makes it hard to go over the e-mails from start to end — how does
the program guess the name of these properties? This can be solved by
more predictable property names:
mailArchive = {

0: 'Dear nephew, ... (mail number 1)'
1: '(mail number 2)'
2: '(mail number 3)'

}

for current of mailArchive
show 'Processing e-mail #' + current +

': ' + mailArchive[current]

Luck has it that there is a special kind of objects specifically for this kind
of use. They are called arrays, and they provide some conveniences, such
as a length property that contains the amount of values in the array, and
a number of operations useful for this kind of collections.
New arrays can be created using brackets ([ and ]). As with properties, the
commas between elements are optional when they are placed on separate
lines. Ranges and for comprehensions also create arrays.
mailArchive = ['mail one', 'mail two', 'mail three']

for current in [0...mailArchive.length]
show 'Processing e-mail #' + current +

': ' + mailArchive[current]

In this example, the numbers of the elements are not specified explicitly
anymore. The first one automatically gets the number 0, the second the
number 1, and so on.
Why start at 0? People tend to start counting from 1. As unintuitive as
it seems, numbering the elements in a collection from 0 is often more
practical. Just go with it for now, it will grow on you.
Starting at element 0 also means that in a collection with X elements, the
last element can be found at position X - 1. This is why the for loop in

63



Data Structures

the example uses an exclusive range 0...mailArchive.length. There is
no element at position mailArchive.length, so as soon as current has
that value, we stop looping.

Exercise 11
Write a function range that takes one argument, a positive number, and
returns an array containing all numbers from 0 up to and including the
given number.
An empty array can be created by simply typing []. Also remem-
ber that adding properties to an object, and thus also to an array, can
be done by assigning them a value with the = operator. The length
property is automatically updated when elements are added.

In CoffeeScript most statements can also be used as expressions. That
means for example that the values from a for comprehension can be col-
lected in a variable and used later.
numbers = (number for number in [0..12] by 2)
show numbers

◦ • ◦
Both string and array objects contain, in addition to the length property,
a number of properties that refer to function values.
doh = 'Doh'
show typeof doh.toUpperCase
show doh.toUpperCase()

Every string has a toUpperCase property. When called, it will return a
copy of the string, in which all letters have been converted to uppercase.
There is also toLowerCase. Guess what that does.
Notice that, even though the call to toUpperCase does not pass any ar-
guments, the function does somehow have access to the string 'Doh', the
value of which it is a property. How this works precisely is described in
Object Orientation.
Properties that contain functions are generally called methods, for exam-
ple ‘toUpperCase is a method of a string object’.

64



Data Structures

mack = []
mack.push 'Mack'
mack.push 'the'
mack.push 'Knife'
show mack.join ' '
show mack.pop()
show mack

The method push, which is associated with arrays, can be used to add
values to it. It could have been used in the last exercise, as an alternative
to result[i] = i. Then there is pop, the opposite of push: it takes off
and returns the last value in the array. join builds a single big string from
an array of strings. The parameter it is given is pasted between the values
in the array.

◦ • ◦
Coming back to those cats, we now know that an array would be a good
way to store the archive of e-mails. In this book, the retrieveMails after
the require can be used to (magically) get hold of this array. The magic
will be dispelled in Modularity. Going over them to process them one after
another is no rocket science anymore either:
mailArchive = (require "./04-emails").retrieveMails()

for email, i in mailArchive
show "Processing e-mail ##{i} #{email[0..15]}..."
# Do more things...

In a for ... in statement we can get both the value and its index in the
array. The email[0..15] gets the first snippet of each email. We have
also decided on a way to represent the set of cats that are alive. The next
problem, then, is to find the paragraphs in an e-mail that start with 'born'
or 'died'.

◦ • ◦
The first question that comes up is what exactly a paragraph is. In this
case, the string value itself can not help us much: CoffeeScript’s concept
of text does not go any deeper than the ‘sequence of characters’ idea, so
we must define paragraphs in those terms.
Earlier, we saw that there is such a thing as a newline character. These are
what most people use to split paragraphs. We consider a paragraph, then,

65



Data Structures

to be a part of an e-mail that starts at a newline character or at the start
of the content, and ends at the next newline character or at the end of the
content.
And we do not even have to write the algorithm for splitting a string into
paragraphs ourselves. Strings already have a method named split, which
is (almost) the opposite of the join method of arrays. It splits a string
into an array, using the string given as its argument to determine in which
places to cut.
words = 'Cities of the Interior'
show words.split ' '

Thus, cutting on newlines ('\n'), can be used to split an e-mail into para-
graphs.

Exercise 12
split and join are  not  precisely  each  other’s  inverse.
string.split(x).join(x) always  produces  the  original  value,
but array.join(x).split(x) does not. Can you give an example of
an array where .join('').split('') produces a different value?

Paragraphs that do not start with either “born” or “died” can be ignored by
the program. How do we test whether a string starts with a certain word?
The method charAt can be used to get a specific character from a string.
x.charAt(0) gives the first character, 1 is the second one, and so on. One
way to check whether a string starts with “born” is:
paragraph = 'born 15-11-2003 (mother Spot): White Fang'
show paragraph.charAt(0) == 'b' &&

paragraph.charAt(1) == 'o' &&
paragraph.charAt(2) == 'r' &&
paragraph.charAt(3) == 'n'

But that gets a bit clumsy — imagine checking for a word of ten char-
acters. There is something to be learned here though: when a line gets
ridiculously long, it can be spread over multiple lines. The result can be
made easier to read by lining up the start of the new line with the first ele-
ment on the original line that plays a similar role. You can also end a line
with \ to indicate that it continues on the next line.

66



Data Structures

Strings also have a method called slice. It copies out a piece of the string,
starting from the character at the position given by the first argument, and
ending before (not including) the character at the position given by the
second one. It is the same as using a range as an index. This allows the
check to be written in a shorter way.
show paragraph.slice(0, 4) == 'born'
show paragraph[0...4] == 'born'

Exercise 13
Write a function called startsWith that takes two arguments, both
strings. It returns true when the first argument starts with the charac-
ters in the second argument, and false otherwise.

What happens when charAt, slice or a range are used to take a piece of a
string that does not exist? Will the startsWith still work when the pattern
is longer than the string it is matched against?
show 'Pip'.charAt 250
show 'Nop'.slice 1, 10
show 'Pin'[1...10]

charAt will return '' when there is no character at the given position, and
slice or the range will simply leave out the part of the new string that
does not exist.
So yes, startsWith should work. When startsWith('Idiots', 'Most
honoured colleagues') is called, the call to slice will, because string
does not have enough characters, always return a string that is shorter
than pattern. Because of that, the comparison with == will return false,
which is correct.
It helps to always take a moment to consider abnormal (but valid) inputs
for a program. These are usually called corner cases, and it is very com-
mon for programs that work perfectly on all the ‘normal’ inputs to screw
up on corner cases.

◦ • ◦
The only part of the cat-problem that is still unsolved is the extraction of
names from a paragraph. The algorithm was this:

67



Data Structures

1. Find the colon in the paragraph.
2. Take the part after this colon.
3. Split this part into separate names by looking for commas.

This has to happen both for paragraphs that start with 'died', and para-
graphs that start with 'born'. It would be a good idea to put it into a
function, so that the two pieces of code that handle these different kinds
of paragraphs can both use it.

Exercise 14
Can you write a function catNames that takes a paragraph as an argu-
ment and returns an array of names?
Strings have an indexOf method that can be used to find the (first)
position of a character or sub-string within that string. Also, when
slice is given only one argument, it will return the part of the string
from the given position all the way to the end. With a range either
the start or end can be left out: 'shorthand'[...5]⇒ 'short' and
'shorthand'[5...]⇒ 'hand'.
It can be helpful to use CoffeeScript interactively to ‘explore’ func-
tions. Try 'foo: bar'.indexOf(':') and see what you get.

All that remains now is putting the pieces together. One way to do that
looks like this:
mailArchive = (require './04-emails').retrieveMails()
livingCats = 'Spot': true

for email, i in mailArchive
paragraphs = email.split '\n'
for paragraph in paragraphs

if startsWith paragraph, 'born'
names = catNames paragraph
for name in names

livingCats[name] = true
else if startsWith paragraph, 'died'

names = catNames paragraph
for name in names

delete livingCats[name]

68



Data Structures

show livingCats

That is quite a big dense chunk of code. We will look into making it a bit
lighter in a moment. But first let us look at our results. We know how to
check whether a specific cat survives:
if 'Spot' in livingCats

show 'Spot lives!'
else

show 'Good old Spot, may she rest in peace.'

But how do we list all the cats that are alive? The of keyword is somewhat
similar to the in keyword when it is used together with for:
for cat of livingCats

show cat

A loop like that will go over the names of the properties in an object, which
allows us to enumerate all the names in our set.

◦ • ◦
Some pieces of code look like an impenetrable jungle. The example so-
lution to the cat problem suffers from this. One way to make some light
shine through it is to just add some strategic blank lines. This makes it
look better, but does not really solve the problem.
What is needed here is to break the code up. We already wrote two helper
functions, startsWith and catNames, which both take care of a small,
understandable part of the problem. Let us continue doing this.
addToSet = (set, values) ->

for i in [0..values.length]
set[values[i]] = true

removeFromSet = (set, values) ->
for i in [0..values.length]

delete set[values[i]]

These two functions take care of the adding and removing of names from
the set. That already cuts out the two most inner loops from the solution:
livingCats = 'Spot': true

69



Data Structures

for email in mailArchive
paragraphs = email.split '\n'
for paragraph in paragraphs

if startsWith paragraph, 'born'
addToSet livingCats, catNames paragraph

else if startsWith paragraph, 'died'
removeFromSet livingCats, catNames paragraph

show livingCats

Quite an improvement, if I may say so myself.
Why do addToSet and removeFromSet take the set as an argument? They
could use the variable livingCats directly, if they wanted to. The rea-
son is that this way they are not completely tied to our current prob-
lem. If addToSet directly changed livingCats, it would have to be called
addCatsToCatSet, or something similar. The way it is now, it is a more
generally useful tool.
Even if we are never going to use these functions for anything else, which
is quite probable, it is useful to write them like this. Because they are ‘self
sufficient’, they can be read and understood on their own, without needing
to know about some external variable called livingCats.
The functions are not pure: They change the object passed as their set
argument. This makes them slightly trickier than real pure functions, but
still a lot less confusing than functions that run amok and change any value
or variable they please.

◦ • ◦
We continue breaking the algorithm into pieces:
findLivingCats = ->

mailArchive = (require './04-emails').retrieveMails()
livingCats = 'Spot': true

handleParagraph = (paragraph) ->
if startsWith paragraph, 'born'

addToSet livingCats, catNames paragraph
else if startsWith paragraph, 'died'

removeFromSet livingCats, catNames paragraph

for email in mailArchive

70



Data Structures

paragraphs = email.split '\n'
for paragraph in paragraphs

handleParagraph paragraph

livingCats

howMany = 0
for cat of findLivingCats()

howMany++
show 'There are ' + howMany + ' cats.'

The whole algorithm is now encapsulated by a function. This means that
it does not leave a mess after it runs: livingCats is now a local variable in
the function, instead of a top-level one, so it only exists while the function
runs. The code that needs this set can call findLivingCats and use the
value it returns.
It seemed to me that making handleParagraph a separate function also
cleared things up. But this one is so closely tied to the cat-algorithm that
it is meaningless in any other situation. On top of that, it needs access to
the livingCats variable. Thus, it is a perfect candidate to be a function-
inside-a-function. When it lives inside findLivingCats, it is clear that
it is only relevant there, and it has access to the variables of its parent
function.
This solution is actually bigger than the previous one. Still, it is tidier and
I hope you will agree that it is easier to read.

◦ • ◦
The program still ignores a lot of the information that is contained in the
e-mails. There are birth-dates, dates of death, and the names of mothers
in there.
To start with the dates: What would be a good way to store a date? We
could make an object with three properties, year, month, and day, and
store numbers in them.
whenWasIt = year: 1980, month: 2, day: 1

But CoffeeScript already provides a kind of object for this purpose. Such
an object can be created by using the keyword new:
whenWasIt = new Date 1980, 1, 1
show whenWasIt

71



Data Structures

Just like the notation with colons and optional braces we have already
seen, new is a way to create object values. Instead of specifying all the
property names and values, a function is used to build up the object. This
makes it possible to define a kind of standard procedure for creating ob-
jects. Functions like this are called constructors, and in Object Orientation we
will see how to write them.
The Date constructor can be used in different ways.
show new Date
show new Date 1980, 1, 1
show new Date 2007, 2, 30, 8, 20, 30

As you can see, these objects can store a time of day as well as a date.
When not given any arguments, an object representing the current time
and date is created. Arguments can be given to ask for a specific date
and time. The order of the arguments is year, month, day, hour, minute,
second, milliseconds. These last four are optional, they become 0 when
not given.
The month numbers these objects use go from 0 to 11, which can be con-
fusing. Especially since day numbers do start from 1.

◦ • ◦
The content of a Date object can be inspected with a number of get...
methods.
today = new Date();
show "Year: #{today.getFullYear()}
month: #{today.getMonth()}
day: #{today.getDate()}"

show "Hour: #{today.getHours()}
minutes: #{today.getMinutes()}
seconds: #{today.getSeconds()}"

show "Day of week: #{today.getDay()}"

All of these, except for getDay, also have a set... variant that can be
used to change the value of the date object.
Inside the object, a date is represented by the amount of milliseconds it is
away from January 1st 1970. You can imagine this is quite a large number.
today = new Date()
show today.getTime()

72



Data Structures

A very useful thing to do with dates is comparing them.
wallFall = new Date 1989, 10, 9
gulfWarOne = new Date 1990, 6, 2
show wallFall < gulfWarOne
show wallFall == wallFall
# but
show wallFall == new Date 1989, 10, 9

Comparing dates with <, >, <=, and >= does exactly what you would expect.
When a date object is compared to itself with == the result is true, which
is also good. But when == is used to compare a date object to a different,
equal date object, we get false. Huh?
As mentioned earlier, == will return false when comparing two different
objects, even if they contain the same properties. This is a bit clumsy and
error-prone here, since one would expect >= and == to behave in a more
or less similar way. Testing whether two dates are equal can be done like
this:
wallFall1 = new Date 1989, 10, 9
wallFall2 = new Date 1989, 10, 9
show wallFall1.getTime() == wallFall2.getTime()

◦ • ◦
In addition to a date and time, Date objects also contain information about
a timezone. When it is one o’clock in Amsterdam, it can, depending on
the time of year, be noon in London, and seven in the morning in New
York. Such times can only be compared when you take their time zones
into account. The getTimezoneOffset function of a Date can be used to
find out how many minutes it differs from GMT (Greenwich Mean Time).
now = new Date()
show now.getTimezoneOffset()

Exercise 15

'died 27/04/2006: Black Leclère'

The date part is always in the exact same place of a paragraph. How
convenient. Write a function extractDate that takes such a paragraph
as its argument, extracts the date, and returns it as a date object.

73



Data Structures

Storing cats will work differently from now on. Instead of just putting the
value true into the set, we store an object with information about the cat.
When a cat dies, we do not remove it from the set, we just add a property
death to the object to store the date on which the creature died.
This means our addToSet and removeFromSet functions have become use-
less. Something similar is needed, but it must also store birth-dates and,
later, the mother’s name.
catRecord = (name, birthdate, mother) ->

name: name
birth: birthdate
mother: mother

addCats = (set, names, birthdate, mother) ->
for name in names

set[name] = catRecord name, birthdate, mother

deadCats = (set, names, deathdate) ->
for name in names

set[name].death = deathdate

catRecord is a separate function for creating these storage objects. It
might be useful in other situations, such as creating the object for Spot.
‘Record’ is a term often used for objects like this, which are used to group
a limited number of values.

◦ • ◦
So let us try to extract the names of the mother cats from the paragraphs.
'born 15/11/2003 (mother Spot): White Fang'

One way to do this would be…
extractMother = (paragraph) ->

start = paragraph.indexOf '(mother '
start += '(mother '.length
end = paragraph.indexOf ')'
paragraph[start...end]

show extractMother \
'born 15/11/2003 (mother Spot): White Fang'

74



Data Structures

Notice how the start position has to be adjusted for the length of the string
'(mother ', because indexOf returns the position of the start of the pat-
tern, not its end.

Exercise 16
The thing that extractMother does can be expressed in a more general
way. Write a function between that takes three arguments, all of which
are strings. It will return the part of the first argument that occurs
between the patterns given by the second and the third arguments.
That is:
between 'born 15/11/2003 (mother Spot): White Fang',

'(mother ', ')'⇒ 'Spot'

between 'bu ] boo [ bah ] gzz', '[ ', ']'⇒ 'bah'

To make that second test work, it can be useful to know that indexOf
can be given a second, optional parameter that specifies at which point
it should start searching.

Having between makes it possible to express extractMother in a simpler
way:
extractMother = (paragraph) ->

between paragraph, '(mother ', ')'

◦ • ◦
The new, improved cat-algorithm looks like this:
findCats = ->

mailArchive = (require './04-emails').retrieveMails()
cats = {'Spot': catRecord 'Spot',

new Date(1997, 2, 5), 'unknown'}

handleParagraph = (paragraph) ->
if startsWith paragraph, 'born'

addCats cats, catNames(paragraph),
extractDate(paragraph),
extractMother(paragraph)

else if startsWith paragraph, 'died'
deadCats cats, catNames(paragraph),

75



Data Structures

extractDate(paragraph)

for email in mailArchive
paragraphs = email.split '\n'
for paragraph in paragraphs

handleParagraph paragraph
cats

catData = findCats()
show catData

Having that extra data allows us to finally have a clue about the cats aunt
Emily talks about. A function like this could be useful:
formatDate = (date) -> "#{date.getDate()}/" +

"#{date.getMonth() + 1}/" +
"#{date.getFullYear()}"

catInfo = (data, name) ->
unless name of data

return "No cat by the name of #{name} is known."
cat = data[name]
message = "#{name}," +

" born #{formatDate cat.birth}" +
" from mother #{cat.mother}"

if "death" of cat
message += ", died #{formatDate cat.death}"

"#{message}."

show catInfo catData, "Fat Igor"

The return statement in catInfo is used as an escape hatch. If there is
no data about the given cat, the rest of the function is meaningless, so
we immediately return a value, which prevents the rest of the code from
running.
In the past, certain groups of programmers considered functions that con-
tain multiple return statements sinful. The idea was that this made it
hard to see which code was executed and which code was not. Other
techniques, which will be discussed in Error Handling, have made the reasons
behind this idea more or less obsolete, but you might still occasionally
come across someone who will criticise the use of ‘shortcut’ return state-
ments.

76



Data Structures

Exercise 17
The formatDate function used by catInfo does not add a zero before
the month and the day part when these are only one digit long. Write
a new version that does this.

The property ‘dot’ accessor that we have been using comes in a handy
form combined with the existential operator. Instead of object.element
we can write object?.element if object is defined then we get the value
as before. But if it is null then we get undefined instead of an error.

Exercise 18
Write a function oldestCat which, given an object containing cats as
its argument, returns the name of the oldest living cat.

Now that we are familiar with arrays, I can show you something related.
Whenever a function is called, a special variable named arguments is
added to the environment in which the function body runs. This variable
refers to an object that resembles an array. It has a property 0 for the first
argument, 1 for the second, and so on for every argument the function was
given. It also has a length property.
This object is not a real array though, it does not have methods like push,
and it does not automatically update its length property when you add
something to it. Why not, I never really found out, but this is something
one needs to be aware of.
argumentCounter = ->

show "You gave me #{arguments.length} arguments."

argumentCounter "Death", "Famine", "Pestilence"

Some functions can take any number of arguments. These typically loop
over the values in the arguments object to do something with them. We
can create a print function that uses show to print each of its arguments.
print = -> show arg for arg in arguments

print 'From here to', 1/0

77



Data Structures

Others can take optional arguments which, when not given by the caller,
get some sensible default value.
add = (number, howmuch) ->

if arguments.length < 2
howmuch = 1

number + howmuch

show add 6
show add 6, 4

Exercise 19
Extend the range function from the exercise on page 64 to take a sec-
ond, optional argument. If only one argument is given, it behaves as
earlier and produces a range from 0 to the given number. If two ar-
guments are given, the first indicates the start of the range, the second
the end.

CoffeeScript has a few of features that can make it simpler to work with
arguments. You can set default values directly in the argument list. The
show function is defined like:
show = (obj, depth = 2, showHidden = false,

colors = useColors) ->
# body

When the arguments starting from depth are not present in a call, they
get the value after the =. No checks are needed in the body where the
arguments are used.
For variable arguments you can use ... commonly called splats. The el-
lipsis can indicate extra arguments in a function definition or a call. Do
you remember the testPure function? It was used with both absolute
which takes one argument and power which takes two. In its definition
(c, a...) says that a... is a variable argument list. The variable argu-
ments are used two times, in the call to func and in the call to property.
prelude.qc.testPure = (func, types, name, property) ->

prelude.qc.declare name, types, (c, a...) ->
c.assert property c, a..., c.note func a...

78



Data Structures

Finally the or= operator can be used in options or= defaults as short-
hand for options || (options = defaults).

Exercise 20
You may remember this line of code from the introduction:
show sum [1..10]

All we need to make this line work is a sum function. This function
takes an array of numbers, and returns their sum. Write it, it should
be easy. Check that it also works with range.

The previous chapter showed the functions Math.max and Math.min. With
what you know now, you will notice that these are really the properties max
and min of the object stored under the name Math. This is another role that
objects can play: A warehouse holding a number of related values.
There are quite a lot of values inside Math, if they would all have been
placed directly into the global environment they would, as it is called,
pollute it. The more names have been taken, the more likely one is to
accidentally overwrite the value of some variable. For example, it is not
a far shot to want to name something max.
Most languages will stop you, or at least warn you, when you are defining
a variable with a name that is already taken. Not JavaScript.
In any case, one can find a whole outfit of mathematical functions and
constants inside Math. All the trigonometric functions are there — cos,
sin, tan, acos, asin, atan. π and e, which are written with all capital
letters (PI and E), which was, at one time, a fashionable way to indicate
something is a constant. pow is a good replacement for the power functions
we have been writing, it also accepts negative and fractional exponents.
sqrt takes square roots. max and min can give the maximum or minimum
of two values. round, floor, and ceil will round numbers to the closest
whole number, the whole number below it, and the whole number above
it respectively.
There are a number of other values in Math, but this text is an introduc-
tion, not a reference. References are what you look at when you suspect
something exists in the language, but need to find out what it is called or
how it worked exactly. A useful reference for predefined global objects
like the Math object exist at the Mozilla Developer Network.

79

https://developer.mozilla.org/en/JavaScript/Reference#Standard_global_objects_(by_category)
https://developer.mozilla.org/en/Javascript


Data Structures

An interesting object is Array when you look through its reference notice
that many definitions for example forEach are marked Requires JavaScript 1.6
or another version number. JavaScript 1.5 corresponds to ECMA-262 3rd

Edition from December 1999.
More than a decade later this is still the standard that most JavaScript
engines implement — including V8, the engine that via JavaScript com-
piles CoffeeScript to native machine code. It is fair to say that JavaScript
is evolving at a glacial pace. Fortunately CoffeeScript and Underscore
leapfrogs the JavaScript process and gives you language and library ad-
vances that you can use without waiting for existing browsers and engines
to be upgraded.

◦ • ◦
Maybe you already thought of a way to find out what is available in the
Math object:
for name of Math

show name

But alas, nothing appears. Similarly, when you do this:
for name of ['Huey', 'Dewey', 'Loui']

show name

You only see 0, 1, and 2, not length, or push, or join, which are definitely
also in there. Apparently, some properties of objects are hidden. There
is a good reason for this: All objects have a few methods, for example
toString, which converts the object into some kind of relevant string,
and you do not want to see those when you are, for example, looking for
the cats that you stored in the object.
Why the properties of Math are hidden is unclear to me. Someone probably
wanted it to be a mysterious kind of object. But you can peek under the
hood with show — see the prelude for details:
show Math, 2, true
show ['Huey', 'Dewey', 'Loui'], 2, true

All properties your programs add to objects are visible. There is no way
to make them hidden, which is unfortunate because, as we will see in Object
Orientation, it would be nice to be able to add methods to objects without
having them show up in our for / of loops.

80

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array


Data Structures

◦ • ◦
Some properties are read-only, you can get their value but not change it.
For example, the properties of a string value are all read-only.
Other properties can be ‘watched’. Changing them causes things to hap-
pen. For example, lowering the length of an array causes excess elements
to be discarded:
array = ['Heaven', 'Earth', 'Man']
array.length = 2
show array

81



Error Handling

Writing programs that work when everything goes as expected is a good
start. Making your programs behave properly when encountering unex-
pected conditions is where it really gets challenging.
The problematic situations that a program can encounter fall into two cat-
egories: Programmer mistakes and genuine problems. If someone forgets
to pass a required argument to a function, that is an example of the first
kind of problem. On the other hand, if a program asks the user to enter a
name and it gets back an empty string, that is something the programmer
can not prevent.
In general, one deals with programmer errors by finding and fixing them,
and with genuine errors by having the code check for them and perform
some suitable action to remedy them (for example, asking for the name
again), or at least fail in a well-defined and clean way.

◦ • ◦
It is important to decide into which of these categories a certain problem
falls. For example, consider our old power function:
power = (base, exponent) ->

result = 1
for count in [0..exponent]

result *= base
result

When some geek tries to call power 'Rabbit', 4, that is quite obviously
a programmer error, but how about power 9, 0.5? The function can not
handle fractional exponents, but, mathematically speaking, raising a num-
ber to the ½ power is perfectly reasonable (Math.pow can handle it). In
situations where it is not entirely clear what kind of input a function ac-
cepts, it is often a good idea to explicitly state the kind of arguments that
are acceptable in a comment.

◦ • ◦

82



Error Handling

If a function encounters a problem that it can not solve itself, what should
it do? In Data Structures we wrote the function between:
between = (string, start, end) ->

startAt = string.indexOf start
startAt += start.length
endAt = string.indexOf end, startAt
string[startAt...endAt]

If the given start and end do not occur in the string, indexOf will return
-1 and this version of between will return a lot of nonsense:
between('Your mother!', '{-', '-}') returns 'our mother'.
When the program is running, and the function is called like that, the code
that called it will get a string value, as it expected, and happily continue
doing something with it. But the value is wrong, so whatever it ends up
doing with it will also be wrong. And if you are unlucky, this wrongness
only causes a problem after having passed through twenty other functions.
In cases like that, it is extremely hard to find out where the problem started.
In some cases, you will be so unconcerned about these problems that you
do not mind the function misbehaving when given incorrect input. For
example, if you know for sure the function will only be called from a
few places, and you can prove that these places give it decent input, it is
generally not worth the trouble to make the function bigger and uglier so
that it can handle problematic cases.
But most of the time, functions that fail ‘silently’ are hard to use, and
even dangerous. What if the code calling between wants to know whether
everything went well? At the moment, it can not tell, except by re-doing
all the work that between did and checking the result of between with its
own result. That is bad. One solution is to make between return a special
value, such as false or undefined, when it fails.
between = (string, start, end) ->

startAt = string.indexOf start
if startAt == -1 then return
startAt += start.length
endAt = string.indexOf end, startAt
if endAt == -1 then return
string[startAt...endAt]

You can see that error checking does not generally make functions prettier.
But now code that calls between can do something like:

83



Error Handling

prompt "Tell me something", "", (answer) ->
parenthesized = between answer, "(", ")"
if parenthesized?

show "You parenthesized '#{parenthesized}'."

◦ • ◦
In many cases returning a special value is a perfectly fine way to indicate
an error. It does, however, have its downsides. Firstly, what if the function
can already return every possible kind of value? For example, consider
this function that gets the last element from an array:
lastElement = (array) ->

if array.length > 0
array[array.length - 1]

else
undefined

show lastElement [1, 2, undefined]

So did the array have a last element? Looking at the value lastElement
returns, it is impossible to say.
The second issue with returning special values is that it can sometimes lead
to a whole lot of clutter. If a piece of code calls between ten times, it has to
check ten times whether undefined was returned. Also, if a function calls
between but does not have a strategy to recover from a failure, it will have
to check the return value of between, and if it is undefined, this function
can then return undefined or some other special value to its caller, who
in turn also checks for this value.
Sometimes, when something strange occurs, it would be practical to just
stop doing what we are doing and immediately jump back to a place that
knows how to handle the problem.
Well, we are in luck, a lot of programming languages provide such a thing.
Usually, it is called exception handling.

◦ • ◦
The theory behind exception handling goes like this: It is possible for code
to raise (or throw) an exception, which is a value. Raising an exception
somewhat resembles a super-charged return from a function — it does not
just jump out of the current function, but also out of its callers, all the way
up to the top-level call that started the current execution. This is called

84



Error Handling

unwinding the stack. You may remember the stack of function calls that
was mentioned in Functions. An exception zooms down this stack, throwing
away all the call contexts it encounters.
If they always zoomed right down to the base of the stack, exceptions
would not be of much use, they would just provide a novel way to blow
up your program. Fortunately, it is possible to set obstacles for exceptions
along the stack. These ‘catch’ the exception as it is zooming down, and
can do something with it, after which the program continues running at
the point where the exception was caught. An example:
lastElement = (array) ->

if array.length > 0
array[array.length - 1]

else
throw 'Can not take the last element' +

' of an empty array.'

lastElementPlusTen = (array) ->
lastElement(array) + 10

try
show lastElementPlusTen []

catch error
show 'Something went wrong: ' + error

throw is the keyword that is used to raise an exception. The keyword
try sets up an obstacle for exceptions: When the code in the block after it
raises an exception, the catch block will be executed. The variable named
in parentheses after the word catch is the name given to the exception
value inside this block.
Note that the function lastElementPlusTen completely ignores the pos-
sibility that lastElement might go wrong. This is the big advantage of
exceptions — error-handling code is only necessary at the point where the
error occurs, and the point where it is handled. The functions in between
can forget all about it. Well, almost.

◦ • ◦
Consider the following: A function processThing wants to set a top-level
variable currentThing to point to a specific thing while its body executes,
so that other functions can have access to that thing too. Normally you

85



Error Handling

would of course just pass the thing as an argument, but assume for a mo-
ment that that is not practical. When the function finishes, currentThing
should be set back to null.
currentThing = null

processThing = (thing) ->
if currentThing != null

throw 'Oh no! We are already processing a thing!'

currentThing = thing
# do complicated processing...
currentThing = null

But what if the complicated processing raises an exception? In that case
the call to processThing will be thrown off the stack by the exception,
and currentThing will never be reset to null.
try statements can also be followed by a finally keyword, which means
‘no matter what happens, run this code after trying to run the code in the
try block’. If a function has to clean something up, the cleanup code
should usually be put into a finally block:
processThing = (thing) ->

if currentThing != null
throw 'Oh no! We are already processing a thing!'

currentThing = thing
try

# do complicated processing...
finally

currentThing = null

◦ • ◦
A lot of errors in programs cause the CoffeeScript environment to raise an
exception. For example:
try

show Sasquatch
catch error

show 'Caught: ' + error.message

86



Error Handling

In cases like this, special error objects are raised. These always have a
message property containing a description of the problem. You can raise
similar objects using the new keyword and the Error constructor:
throw new Error 'Fire!'

◦ • ◦
When an exception goes all the way to the bottom of the stack without
being caught, it gets handled by the environment. What this means dif-
fers between different browsers and engines, sometimes a description of
the error is written to some kind of log, sometimes a window pops up
describing the error.
The errors produced by entering code in the CoffeeScript REPL are caught
by the console, and displayed along with a stack trace.

◦ • ◦
Most programmers consider exceptions purely an error-handling mech-
anism. In essence, though, they are just another way of influencing the
control flow of a program. For example, they can be used as a kind of
break statement in a recursive function. Here is a slightly strange func-
tion which determines whether an object, and the objects stored inside it,
contain at least seven true values:
FoundSeven = {}
hasSevenTruths = (object) ->

counted = 0
count = (object) ->

for name of object
if object[name] == true

if (++counted) == 7
throw FoundSeven

if typeof object[name] == 'object'
count object[name]

try
count object
return false

catch exception
if exception != FoundSeven

throw exception
return true

87



Error Handling

The inner function count is recursively called for every object that is part
of the argument. When the variable counted reaches seven, there is no
point in continuing to count, but just returning from the current call to
count will not necessarily stop the counting, since there might be more
calls below it. So what we do is just throw a value, which will cause the
control to jump right out of any calls to count, and land at the catch block.
But just returning true in case of an exception is not correct. Something
else might be going wrong, so we first check whether the exception is the
object FoundSeven, created specifically for this purpose. If it is not, this
catch block does not know how to handle it, so it raises it again.
This is a pattern that is also common when dealing with error conditions
— you have to make sure that your catch block only handles exceptions
that it knows how to handle. Throwing string values, as some of the ex-
amples in this chapter do, is rarely a good idea, because it makes it hard to
recognise the type of the exception. A better idea is to use unique values,
such as the FoundSeven object, or to introduce a new type of objects, as
described in Object Orientation.

88



Paradigm

89



Functional Programming

As programs get bigger, they also become more complex and harder to
understand. We all think ourselves pretty clever, of course, but we are
mere human beings, and even a moderate amount of chaos tends to baffle
us. And then it all goes downhill. Working on something you do not
really understand is a bit like cutting random wires on those time-activated
bombs they always have in movies. If you are lucky, you might get the
right one — especially if you are the hero of the movie and strike a suitably
dramatic pose — but there is always the possibility of blowing everything
up.
Admittedly, in most cases, breaking a program does not cause any large
explosions. But when a program, by someone’s ignorant tinkering, has
degenerated into a ramshackle mass of errors, reshaping it into something
sensible is a terrible labour — sometimes you might just as well start over.
Thus, the programmer is always looking for ways to keep the complexity
of his programs as low as possible. An important way to do this is to try
and make code more abstract. When writing a program, it is easy to get
sidetracked into small details at every point. You come across some little
issue, and you deal with it, and then proceed to the next little problem, and
so on. This makes the code read like a grandmother’s tale.

Yes, dear, to make pea soup you will need split peas, the dry
kind. And you have to soak them at least for a night, or you
will have to cook them for hours and hours. I remember one
time, when my dull son tried to make pea soup. Would you be-
lieve he hadn’t soaked the peas? We almost broke our teeth,
all of us. Anyway, when you have soaked the peas, and you’ll
want about a cup of them per person, and pay attention be-
cause they will expand a bit while they are soaking, so if you
aren’t careful they will spill out of whatever you use to hold
them, so also use plenty water to soak in, but as I said, about
a cup of them, when they are dry, and after they are soaked

90



Functional Programming

you cook them in four cups of water per cup of dry peas. Let
it simmer for two hours, which means you cover it and keep it
barely cooking, and then add some diced onions, sliced cel-
ery stalk, and maybe a carrot or two and some ham. Let it all
cook for a few minutes more, and it is ready to eat.

Another way to describe this recipe:
Per person: one cup dried split peas, half a chopped onion,
half a carrot, a celery stalk, and optionally ham.
Soak peas overnight, simmer them for two hours in four cups
of water (per person), add vegetables and ham, and cook for
ten more minutes.

This is shorter, but if you do not know how to soak peas you will surely
screw up and put them in too little water. But how to soak peas can be
looked up, and that is the trick. If you assume a certain basic knowledge
in the audience, you can talk in a language that deals with bigger concepts,
and express things in a much shorter and clearer way.
This, more or less, is what abstraction is.
How is this far-fetched recipe story relevant to programming? Well, ob-
viously, the recipe is the program. Furthermore, the basic knowledge that
the cook is supposed to have corresponds to the functions and other con-
structs that are available to the programmer. If you remember the intro-
duction of this book, things like while make it easier to build loops, and in
Data Structures we wrote some simple functions in order to make other func-
tions shorter and more straightforward. Such tools, some of them made
available by the language itself, others built by the programmer, are used
to reduce the amount of uninteresting details in the rest of the program,
and thus make that program easier to work with.

◦ • ◦
Functional programming, which is the subject of this chapter, produces
abstraction through clever ways of combining functions. A programmer
armed with a repertoire of fundamental functions and, more importantly,
the knowledge on how to use them, is much more effective than one who
starts from scratch. Unfortunately, a standard CoffeeScript environment
comes with deplorably few essential functions, so we have to write them
ourselves or, which is often preferable, make use of somebody else’s code
(more on that in Modularity).

91



Functional Programming

In this chapter we write a set of useful functions to understand how they
work and solve problems with them to understand how to use them. In
later chapters we will use the larger set of functions in the Underscore
library that comes with CoffeeScript.
There are other popular approaches to abstraction, most notably object-
oriented programming, the subject of Object Orientation.

◦ • ◦
In programming a fundamental operation is performing an action on every
element of an array. Many programming languages have borrowed their
way of doing this from the C programming language:
size_t i;
size_t N = sizeof(thing) / sizeof(thing[0]);
for (i = 0; i < N; ++i) {

do_something(thing[i]);
}

That is very ugly, an eyesore if you have any good taste at all. It has
been improved somewhat in derived languages like C++ and JavaScript.
Other programming languages can have very different approaches16. In
CoffeeScript it becomes the reasonably pleasant:
for i in [0...thing.length] then doSomething thing[i]
# or
for element in thing then doSomething element

Still do we have to do this over and over or can it be abstracted?
The problem is that, whereas most functions just take some values, com-
bine them, and return something, such a loop contains a piece of code that
it must execute. It is easy to write a function that goes over an array and
prints out every element:
printArray = (array) ->

for element in array
show element

return

16In Mathematica a function can be set as listable — eliminating the need for a loop:
f[x_] := If[x > 0, Sqrt[x], Sqrt[-x]]; SetAttributes[f, Listable];

f[{3, 0, -2}]⇒ {√3, 0,
√

2}

92



Functional Programming

But what if we want to do something else than print? Since ‘doing some-
thing’ can be represented as a function, and functions are also values, we
can pass our action as a function value:
forEach = (array, action) ->

for element in array
action element

#return
forEach ['Wampeter', 'Foma', 'Granfalloon'], show

In CoffeeScript most statements are expressions that return a value, that
is also the case with the for statement. A return statement at the end of
forEach will make it return undefined. Here forEach is allowed to return
its value, when we get to the map function you will see why.
By making use of an anonymous function, something just like a for loop
can be written as:
sum = (numbers) ->

total = 0
forEach numbers, (number) -> total += number
total

show sum [1, 10, 100]

Note that the variable total is visible inside the anonymous function be-
cause of the scoping rules. Also note that this version is hardly shorter
than the for loop.
You do get a variable bound to the current element in the array, number,
so there is no need to use numbers[i] anymore, and when this array is
created by evaluating some expression, there is no need to store it in a
variable, because it can be passed to forEach directly.
The cat-code in Data Structures contains a piece like this:
paragraphs = email.split '\n'
for paragraph in paragraphs

handleParagraph paragraph

This can now be written as…
forEach email.split('\n'), handleParagraph

On the whole, using more abstract (or ‘higher level’) constructs results in
more information and less noise: The code in sum reads ‘for each num-
ber in numbers add that number to the total’, instead of… ‘there is this

93



Functional Programming

variable that starts at zero, and it counts upward to the length of the ar-
ray called numbers, and for every value of this variable we look up the
corresponding element in the array and add this to the total’.

◦ • ◦
What forEach does is take an algorithm, in this case ‘going over an array’,
and abstract it. The ‘gaps’ in the algorithm, in this case, what to do for
each of these elements, are filled by functions which are passed to the
algorithm function.
Functions that operate on other functions are called higher-order func-
tions. By operating on functions, they can talk about actions on a whole
new level. The makeAddFunction function from Functions is also a higher-
order function. Instead of taking a function value as an argument, it pro-
duces a new function.
Higher-order functions can be used to generalise many algorithms that
regular functions can not easily describe. When you have a repertoire of
these functions at your disposal, it can help you think about your code in
a clearer way: Instead of a messy set of variables and loops, you can de-
compose algorithms into a combination of a few fundamental algorithms,
which are invoked by name, and do not have to be typed out again and
again.
Being able to write what we want to do instead of how we do it means
we are working at a higher level of abstraction. In practice, this means
shorter, clearer, and more pleasant code.

◦ • ◦
Another useful type of higher-order function modifies the function value
it is given:
negate = (func) ->

(x) -> not func x

isNotNaN = negate isNaN
show isNotNaN NaN

The function returned by negate feeds the argument it is given to the orig-
inal function func, and then negates the result. But what if the function
you want to negate takes more than one argument? You can get access
to any arguments passed to a function with the arguments array, but how

94



Functional Programming

do you call a function when you do not know how many arguments you
have?
Functions17 have a method called apply, which is used for situations like
this. It takes two arguments. The role of the first argument will be dis-
cussed in Object Orientation, for now we just use null there. The second argu-
ment is an array containing the arguments that the function must be applied
to. Now you know the underlying arguments mechanism remember that
you can also use splats…
show Math.min.apply null, [5, 6]

negate = (func) ->
-> not func.apply null, arguments

negate = (func) ->
(args...) -> not func args...

◦ • ◦
Let us look at a few more basic algorithms related to arrays. The sum
function is really a variant of an algorithm which is usually called reduce
or foldl:
reduce = (array, combine, base) ->

forEach array, (element) ->
base = combine base, element

base

add = (a, b) -> a + b
sum = (numbers) -> reduce numbers, add, 0
show sum [1, 10, 100]

reduce combines an array into a single value by repeatedly using a func-
tion that combines an element of the array with a base value. This is ex-
actly what sum did, so it can be made shorter by using reduce… except
that addition is an operator and not a function in CoffeeScript, so we first
had to put it into a function.
17Unfortunately, on at least older versions of the Internet Explorer browser a lot of built-

in functions, such as alert, are not really functions… or something. They report
their type as 'object' when given to the typeof operator, and they do not have
an apply method. Your own functions do not suffer from this, they are always real
functions.

95



Functional Programming

Exercise 21
Write a function countZeroes, which takes an array of numbers as
its argument and returns the amount of zeroes that occur in it. Use
reduce.
Then, write the higher-order function count, which takes an array and
a test function as arguments, and returns the amount of elements in
the array for which the test function returned true. Re-implement
countZeroes using this function.

One other generally useful ‘fundamental algorithm’ related to arrays is
called map. It goes over an array, applying a function to every element, just
like forEach. But instead of discarding the values returned by function, it
builds up a new array from these values.
map = (array, func) ->

result = []
forEach array, (element) ->

result.push func element
result

show map [0.01, 2, 9.89, Math.PI], Math.round

Note that the last argument is called func, not function, this is because
function is a keyword and thus not a valid variable name. And then:
# Leave out result since forEach already returns it
map = (array, func) ->

forEach array, (element) ->
func element

# Leave out func arguments
map = (array, func) ->

forEach array, func

# Leave out forEach arguments
map = forEach

The reduction shows how nicely functions and expressions can be used to
shorten a function. If we were concerned with the performance of forEach

96



Functional Programming

then inserting a return at the end of its definition would prevent it from
collecting the results of the for comprehension and we would have to
provide an implementation in map.

◦ • ◦
There once was, living in the deep mountain forests of Transylvania, a
recluse. Most of the time, he just wandered around his mountain, talking
to trees and laughing with birds. But now and then, when the pouring
rain trapped him in his little hut, and the howling wind made him feel
unbearably small, the recluse felt an urge to write something, wanted to
pour some thoughts out onto paper, where they could maybe grow bigger
than he himself was.
After failing miserably at poetry, fiction, and philosophy, the recluse fi-
nally decided to write a technical book. In his youth, he had done some
computer programming, and he figured that if he could just write a good
book about that, fame and recognition would surely follow.
So he wrote. At first he used fragments of tree bark, but that turned out
not to be very practical. He went down to the nearest village and bought
himself a laptop computer. After a few chapters, he realised he wanted to
put the book in HTML format, in order to put it on his web-page…

Are you familiar with HTML? It is the method used to add mark-up to
pages on the web, and we will be using it a few times in this book, so it

97



Functional Programming

would be nice if you know how it works, at least generally. If you are
a good student, you could go search the web for a good introduction to
HTML now, and come back here when you have read it. Most of you
probably are lousy students, so I will just give a short explanation and
hope it is enough.
HTML stands for ‘HyperText Mark-up Language’. An HTML document
is all text. Because it must be able to express the structure of this text,
information about which text is a heading, which text is purple, and so
on, a few characters have a special meaning, somewhat like backslashes
in CoffeeScript strings. The ‘less than’ and ‘greater than’ characters are
used to create ‘tags’. A tag gives extra information about the text in the
document. It can stand on its own, for example to mark the place where a
picture should appear in the page, or it can contain text and other tags, for
example when it marks the start and end of a paragraph.
Some tags are compulsory, a whole HTML document must always be con-
tained in between html tags. The HTML version is specified on the first
line with the document type, DOCTYPE, so browsers can parse and render
it correctly. Here is an example of an HTML5 document:
<!DOCTYPE HTML>
<html>

<head>
<meta charset="utf-8"/>
<title>A quote</title>

</head>
<body>

<h1>A quote</h1>
<blockquote>

<p>The connection between the language in which we
think/program and the problems and solutions we can
imagine is very close. For this reason restricting
language features with the intent of eliminating
programmer errors is at best dangerous.</p>
<p>-- Bjarne Stroustrup</p>

</blockquote>
<p>Mr. Stroustrup is the inventor of the C++
programming language, but quite an insightful
person nevertheless.</p>
<p>Also, here is a picture of an ostrich:</p>
<img src="../img/ostrich.jpg"/>

</body>
</html>

98



Functional Programming

Elements that contain text or other tags are first opened with <tagname>,
and afterwards finished with </tagname>. The html element always con-
tains two children: head and body. The first contains information about
the document, the second contains the actual document.
Most tag names are cryptic abbreviations. h1 stands for ‘heading 1’, the
biggest kind of heading. There are also h2 to h6 for successively smaller
headings. p means ‘paragraph’, and img stands for ‘image’. The img ele-
ment does not contain any text or other tags, but it does have some extra
information, src="../img/ostrich.png", which is called an ‘attribute’.
In this case, it contains information about the image file that should be
shown here.
Because < and > have a special meaning in HTML documents, they can
not be written directly in the text of the document. If you want to say
‘5 < 10’ in an HTML document, you have to write ‘5 &lt; 10’, where
‘lt’ stands for ‘less than’. ‘&gt;’ is used for ‘>’, and because these codes
also give the ampersand character a special meaning, a plain ‘&’ is written
as ‘&amp;’.
Now, those are only the bare basics of HTML, but they should be enough
to make it through this chapter, and later chapters that deal with HTML
documents, without getting entirely confused.

◦ • ◦
The prelude has a function viewURL that can be used to look at HTML docu-
ments. The example document above is stored in the file '06-Quote.html',
so you can view it by executing the following code:
viewURL '06-Quote.html'

You can also run a tiny server from your program or the interactive Coffee-
Script environment (REPL). It can serve a webpage either from a string
variable or from a file. If you have created a web page in a string variable,
say stroustrupQuote then you can start the server with:
viewServer stroustrupQuote

Or you could give it a filename as its argument. When you are done with
the server then you can either type stopServer() or CTRL-C.

◦ • ◦

99



Functional Programming

So, picking up the story again, the recluse wanted to have his book in
HTML format. At first he just wrote all the tags directly into his manuscript,
but typing all those less-than and greater-than signs made his fingers hurt,
and he constantly forgot to write &amp; when he needed an &. This gave
him a headache. Next, he tried to write the book in Microsoft Word, and
then save it as HTML. But the HTML that came out of that was fifteen
times bigger and more complicated than it had to be. And besides, Mi-
crosoft Word gave him a headache.
The solution that he eventually came up with was this: He would write the
book as plain text, following some simple rules about the way paragraphs
were separated and the way headings looked. Then, he would write a
program to convert this text into precisely the HTML that he wanted.
The rules are this:

1. Paragraphs are separated by blank lines.
2. A paragraph that starts with a ‘%’ symbol is a header. The more ‘%’

symbols, the smaller the header.
3. Inside paragraphs, pieces of text can be emphasised by putting them

between asterisks.
4. Footnotes are written between braces.

◦ • ◦
After he had struggled painfully with his book for six months, the recluse
had still only finished a few paragraphs. At this point, his hut was struck
by lightning, killing him, and forever putting his writing ambitions to rest.
From the charred remains of his laptop, I could recover the following file:
% The Book of Programming

%% The Two Aspects

Below the surface of the machine, the program moves.
Without effort, it expands and contracts. In great harmony,
electrons scatter and regroup. The forms on the monitor
are but ripples on the water. The essence stays invisibly
below.

When the creators built the machine, they put in the
processor and the memory. From these arise the two aspects
of the program.

The aspect of the processor is the active substance. It is

100



Functional Programming

called Control. The aspect of the memory is the passive
substance. It is called Data.

Data is made of merely bits, yet it takes complex forms.
Control consists only of simple instructions, yet it
performs difficult tasks. From the small and trivial, the
large and complex arise.

The program source is Data. Control arises from it. The
Control proceeds to create new Data. The one is born from
the other, the other is useless without the one. This is
the harmonious cycle of Data and Control.

Of themselves, Data and Control are without structure. The
programmers of old moulded their programs out of this raw
substance. Over time, the amorphous Data has crystallised
into data types, and the chaotic Control was restricted
into control structures and functions.

%% Short Sayings

When a student asked Fu-Tzu about the nature of the cycle
of Data and Control, Fu-Tzu replied 'Think of a compiler,
compiling itself.'

A student asked 'The programmers of old used only simple
machines and no programming languages, yet they made
beautiful programs. Why do we use complicated machines
and programming languages?'. Fu-Tzu replied 'The builders
of old used only sticks and clay, yet they made beautiful
huts.'

A hermit spent ten years writing a program. 'My program can
compute the motion of the stars on a 286-computer running
MS DOS', he proudly announced. 'Nobody owns a 286-computer
or uses MS DOS anymore.', Fu-Tzu responded.

Fu-Tzu had written a small program that was full of global
state and dubious shortcuts. Reading it, a student asked
'You warned us against these techniques, yet I find them in
your program. How can this be?' Fu-Tzu said 'There is no
need to fetch a water hose when the house is not on fire.'
{This is not to be read as an encouragement of sloppy
programming, but rather as a warning against neurotic
adherence to rules of thumb.}

101



Functional Programming

%% Wisdom

A student was complaining about digital numbers. 'When I
take the root of two and then square it again, the result
is already inaccurate!'. Overhearing him, Fu-Tzu laughed.
'Here is a sheet of paper. Write down the precise value of
the square root of two for me.'

Fu-Tzu said 'When you cut against the grain of the wood,
much strength is needed. When you program against the grain
of a problem, much code is needed.'

Tzu-li and Tzu-ssu were boasting about the size of their
latest programs. 'Two-hundred thousand lines', said Tzu-li,
'not counting comments!'. 'Psah', said Tzu-ssu, 'mine is
almost a *million* lines already.' Fu-Tzu said 'My best
program has five hundred lines.' Hearing this, Tzu-li and
Tzu-ssu were enlightened.

A student had been sitting motionless behind his computer
for hours, frowning darkly. He was trying to write a
beautiful solution to a difficult problem, but could not
find the right approach. Fu-Tzu hit him on the back of his
head and shouted '*Type something!*' The student started
writing an ugly solution. After he had finished, he
suddenly understood the beautiful solution.

%% Progression

A beginning programmer writes his programs like an ant
builds her hill, one piece at a time, without thought for
the bigger structure. His programs will be like loose sand.
They may stand for a while, but growing too big they fall
apart{Referring to the danger of internal inconsistency
and duplicated structure in unorganised code.}.

Realising this problem, the programmer will start to spend
a lot of time thinking about structure. His programs will
be rigidly structured, like rock sculptures. They are solid,
but when they must change, violence must be done to them
{Referring to the fact that structure tends to put
restrictions on the evolution of a program.}.

The master programmer knows when to apply structure and
when to leave things in their simple form. His programs
are like clay, solid yet malleable.

102



Functional Programming

%% Language

When a programming language is created, it is given
syntax and semantics. The syntax describes the form of
the program, the semantics describe the function. When the
syntax is beautiful and the semantics are clear, the
program will be like a stately tree. When the syntax is
clumsy and the semantics confusing, the program will be
like a bramble bush.

Tzu-ssu was asked to write a program in the language
called Java, which takes a very primitive approach to
functions. Every morning, as he sat down in front of his
computer, he started complaining. All day he cursed,
blaming the language for all that went wrong. Fu-Tzu
listened for a while, and then reproached him, saying
'Every language has its own way. Follow its form, do not
try to program as if you were using another language.'

◦ • ◦
To honour the memory of our good recluse, I would like to finish his
HTML-generating program for him. A good approach to this problem
goes like this:

1. Split the file into paragraphs by cutting it at every empty line.
2. Remove the ‘%’ characters from header paragraphs and mark them

as headers.
3. Process the text of the paragraphs themselves, splitting them into

normal parts, emphasised parts, and footnotes.
4. Move all the footnotes to the bottom of the document, leaving num-

bers18 in their place.
5. Wrap each piece into the correct HTML tags.
6. Combine everything into a single HTML document.

This approach does not allow footnotes inside emphasised text, or vice
versa. This is kind of arbitrary, but helps keep the example code simple.
If, at the end of the chapter, you feel like an extra challenge, you can try
to revise the program to support ‘nested’ mark-up.
The whole manuscript is in '06-RecluseFile.text'. You can get it as a
string value by calling the readTextFile function in the prelude.
18Like this…

103



Functional Programming

recluseFile = readTextFile '06-RecluseFile.text'

◦ • ◦

Step 1 of the algorithm is trivial. A blank line is what you get when you
have two newlines in a row, and if you remember the split method that
strings have, which we saw in Data Structures, you will realise that this will do
the trick:
paragraphs = recluseFile.split "\n\n"
show "Found #{paragraphs.length} paragraphs."

Exercise 22
Write a function processParagraph that, when given a paragraph
string as its argument, checks whether this paragraph is a header. If
it is, it strips of the ‘%’ characters and counts their number. Then,
it returns an object with two properties, content, which contains the
text inside the paragraph, and type, which contains the tag that this
paragraph must be wrapped in, 'p' for regular paragraphs, 'h1' for
headers with one ‘%’, and 'hX' for headers with X ‘%’ characters.

This is where we can try out the map function we saw earlier.
paragraphs = map recluseFile.split('\n\n'),

processParagraph
show paragraphs[0..2]

And bang, we have an array of nicely categorised paragraph objects. We
are getting ahead of ourselves though, we forgot step 3 of the algorithm:

Process the text of the paragraphs themselves, splitting them
into normal parts, emphasised parts, and footnotes.

Which can be decomposed into:
1. If the paragraph starts with an asterisk, take off the emphasised part

and store it.
2. If the paragraph starts with an opening brace, take off the footnote

and store it.
3. Otherwise, take off the part until the first emphasised part or foot-

note, or until the end of the string, and store it as normal text.

104



Functional Programming

4. If there is anything left in the paragraph, start at 1 again.

Exercise 23
Build a function splitParagraph which, given a paragraph string,
returns an array of paragraph fragments. Think of a good way to rep-
resent the fragments, they need type and content properties.
The method indexOf, which searches for a character or sub-string in
a string and returns its position, or -1 if not found, will probably be
useful in some way here.
This is a tricky algorithm, and there are many not-quite-correct or
way-too-long ways to describe it. If you run into problems, just think
about it for a minute. Try to write inner functions that perform the
smaller actions that make up the algorithm.

We can now wire processParagraph to also split the text inside the para-
graphs, my version can be modified like this:
processParagraph = (paragraph) ->

header = 0
while paragraph[0] == '%'

paragraph = paragraph.slice 1
header++

type: if header == 0 then 'p' else 'h' + header,
content: splitParagraph paragraph

# Adhoc test
recluseFile = readTextFile '06-RecluseFile.text'
paragraphs = map recluseFile.split('\n\n'),

processParagraph
show paragraphs, 3

Mapping that over the array of paragraphs gives us an array of paragraph
objects, which in turn contain arrays of fragment objects. The next thing
to do is to take out the footnotes, and put references to them in their place.
Something like this:
extractFootnotes = (paragraphs) ->

footnotes = []
currentNote = 0
replaceFootnote = (fragment) ->

105



Functional Programming

if fragment.type == 'footnote'
++currentNote
footnotes.push fragment
fragment.number = currentNote
type: 'reference', number: currentNote

else
fragment

forEach paragraphs, (paragraph) ->
paragraph.content = map paragraph.content,

replaceFootnote
footnotes

The replaceFootnote function is called on every fragment. When it gets
a fragment that should stay where it is, it just returns it, but when it gets
a footnote, it stores this footnote in the footnotes array, and returns a
reference to it instead. In the process, every footnote and reference is also
numbered.

◦ • ◦
That gives us enough tools to extract the information we need from the
file. All that is left now is generating the correct HTML.
A lot of people think that concatenating strings is a great way to produce
HTML. When they need a link to, for example, a site where you can play
the game of Go, they will do:
url = "http://www.gokgs.com/"
text = "Play Go!"
linkText = "<a href=\"#{url}\">#{text}</a>"
show linkText

(Where a is the tag used to create links in HTML documents.) … Not only
is this clumsy, but when the string text happens to include an angular
bracket or an ampersand, it is also wrong. Weird things will happen on
your website, and you will look embarrassingly amateurish. We would
not want that to happen. A few simple HTML-generating functions are
easy to write. So let us write them.

◦ • ◦
The secret to successful HTML generation is to treat your HTML document
as a data structure instead of a flat piece of text. CoffeeScript’s objects
provide a very easy way to model this:

106



Functional Programming

linkObject =
name: 'a'
attributes:

href: 'http://www.gokgs.com/'
content: ['Play Go!']

Each HTML element contains a name property, giving the name of the tag it
represents. When it has attributes, it also contains an attributes property,
which contains an object in which the attributes are stored. When it has
content, there is a content property, containing an array of other elements
contained in this element. Strings play the role of pieces of text in our
HTML document, so the array ['Play Go!'] means that this link has only
one element inside it, which is a simple piece of text.
Typing in these objects directly is clumsy, but we do not have to do that.
We provide a shortcut function to do this for us:
tag = (name, content, attributes) ->

name: name
attributes: attributes
content: content

Note that, since we allow the attributes and content of an element to
be undefined if they are not applicable, the second and third argument to
this function can be left off when they are not needed.
tag is still rather primitive, so we write shortcuts for common types of
elements, such as links, or the outer structure of a simple document:
link = (target, text) ->

tag "a", [text], href: target

show link "http://www.gokgs.com/", "Play Go!"

htmlDoc = (title, bodyContent) ->
tag "html", [tag("head", [tag "title", [title]]),

tag "body", bodyContent]

show htmlDoc "Quote", "In his house at R'lyeh " +
"dead Cthulu waits dreaming."

107



Functional Programming

Exercise 24
Looking back at the example HTML document if necessary, write an
image function which, when given the location of an image file, will
create an img HTML element.

When we have created a document, it will have to be reduced to a string.
But building this string from the data structures we have been producing
is very straightforward. The important thing is to remember to transform
the special characters in the text of our document…
escapeHTML = (text) ->

replacements = [[/&/g, '&amp;']
[/"/g, '&quot;']
[/</g, '&lt;']
[/>/g, '&gt;']]

forEach replacements, (replace) ->
text = text.replace replace[0], replace[1]

text

The replace method of strings creates a new string in which all occur-
rences of the pattern in the first argument are replaced by the second argu-
ment, so 'Borobudur'.replace(/r/g, 'k') gives 'Bokobuduk'. Do not
worry about the pattern syntax here — we will get to that in Regular Expressions.
The escapeHTML function puts the different replacements that have to be
made into an array, so that it can loop over them and apply them to the
argument one by one.
Double quotes are also replaced, because we will also be using this func-
tion for the text inside the attributes of HTML tags. Those will be sur-
rounded by double quotes, and thus must not have any double quotes in-
side of them.
Calling replace four times means the computer has to go over the whole
string four times to check and replace its content. This is not very effi-
cient. If we cared enough, we could write a more complex version of this
function, something that resembles the splitParagraph function we saw
earlier, to go over it only once. For now, we are too lazy for this. Again,
Regular Expressions shows a much better way to do this.

◦ • ◦

108



Functional Programming

To turn an HTML element object into a string, we can use a recursive
function like this:
renderHTML = (element) ->

pieces = []

renderAttributes = (attributes) ->
result = []
if attributes

for name of attributes
result.push ' ' + name + '="' +

escapeHTML(attributes[name]) + '"'
result.join ''

render = (element) ->
# Text node
if typeof element is 'string'

pieces.push escapeHTML element
# Empty tag
else if not element.content or

element.content.length == 0
pieces.push '<' + element.name +

renderAttributes(element.attributes) + '/>'
# Tag with content
else

pieces.push '<' + element.name +
renderAttributes(element.attributes) + '>'

forEach element.content, render
pieces.push '</' + element.name + '>'

render element
pieces.join ''

Note the of loop that extracts the properties from a CoffeeScript object
in order to make HTML tag attributes out of them. Also note that in two
places, arrays are being used to accumulate strings, which are then joined
into a single result string. Why did I not just start with an empty string
and then add the content to it with the += operator?
It turns out that creating new strings, especially big strings, is quite a lot
of work. Remember that CoffeeScript string values never change. If you
concatenate something to them, a new string is created, the old ones stay

109



Functional Programming

intact. If we build up a big string by concatenating lots of little strings,
new strings have to be created at every step, only to be thrown away when
the next piece is concatenated to them. If, on the other hand, we store all
the little strings in an array and then join them, only one big string has to
be created.

◦ • ◦
So, let us try out this HTML generating system…
show renderHTML link 'http://www.nedroid.com',

'Drawings!'

That seems to work.
body = [tag('h1', ['The Test']),

tag('p', ['Here is a paragraph ' +
'and an image...']),

image('../img/ostrich.jpg')]
doc = htmlDoc 'The Test', body
show renderHTML doc
# Type `stopServer()` or Ctrl-C when done.
viewServer renderHTML doc

Now, I should probably warn you that this approach is not perfect. What it
actually renders is XML, which is similar to HTML, but more structured. In
simple cases, such as the above, this does not cause any problems. How-
ever, there are some things, which are correct XML, but not proper HTML,
and these might confuse a browser that is trying to show the documents
we create. For example, if you have an empty script tag (used to put
JavaScript into a page) in your document, browsers will not realise that it
is empty and think that everything after it is JavaScript. (In this case, the
problem can be fixed by putting a single space inside of the tag, so that it
is no longer empty, and gets a proper closing tag.)

Exercise 25
Write a function renderFragment, and use that to implement another
function renderParagraph, which takes a paragraph object (with the
footnotes already filtered out), and produces the correct HTML ele-
ment (which might be a paragraph or a header, depending on the type
property of the paragraph object).

110



Functional Programming

This function might come in useful for rendering the footnote refer-
ences:
footnote = (number) ->

tag 'sup',
[link '#footnote' + number, String number]

A sup tag will show its content as ‘superscript’, which means it will
be smaller and a little higher than other text. The target of the link will
be something like '#footnote1'. Links that contain a ‘#’ character
refer to ‘anchors’ within a page, and in this case we will use them to
make it so that clicking on the footnote link will take the reader to the
bottom of the page, where the footnotes live.
The tag to render emphasised fragments with is em, and normal text
can be rendered without any extra tags.

We are almost finished. The only thing that we do not have a rendering
function for yet are the footnotes. To make the '#footnote1' links work,
an anchor must be included with every footnote. In HTML, an anchor is
specified with an a element, which is also used for links. In this case, it
needs a name attribute, instead of an href.
renderFootnote = (footnote) ->

anchor = tag "a", [],
name: "footnote" + footnote.number

number = "[#{footnote.number}] "
tag "p", [tag("small",

[anchor, number, footnote.content])]

Here, then, is the function which, when given a file in the correct format
and a document title, returns an HTML document:
renderFile = (file, title) ->

paragraphs = map file.split('\n\n'),
processParagraph

footnotes = map extractFootnotes(paragraphs),
renderFootnote

body = map paragraphs,
renderParagraph

body = body.concat footnotes

111



Functional Programming

renderHTML htmlDoc title, body

page = renderFile recluseFile, 'The Book of Programming'
show page
# Type `stopServer()` or Ctrl-C when done.
viewServer page

The concat method of an array can be used to concatenate another array
to it, similar to what the + operator does with strings.

◦ • ◦
In the chapters after this one, elementary higher-order functions like map
and reduce will always be available from the Underscore library and will
be used by code examples. Now and then, a new useful tool is explained
and added to this. In Modularity, we develop a more structured approach to
this set of ‘basic’ functions.

◦ • ◦
In some functional programming languages operators are functions, for
example in Pure you can write foldl (+) 0 (1..10); the same in Coffee-
Script is reduce [1..10], ((a, b) -> a + b), 0. A way to shorten
this is by defining an object that is indexed by an operator in a string:
op = {

'+': (a, b) -> a + b
'==': (a, b) -> a == b
'!': (a) -> !a
# and so on

}
show reduce [1..10], op['+'], 0

The list of operators is quite long, so it is questionable whether such a data
structure improves readability compared to:
add = (a, b) -> a + b
show reduce [1..10], add, 0

And what if we need something like equals or makeAddFunction, in which
one of the arguments already has a value? In that case we are back to writ-
ing a new function again.
For cases like that, something called ‘partial application’ is useful. You
want to create a new function that already knows some of its arguments,

112



Functional Programming

and treats any additional arguments it is passed as coming after these fixed
arguments. A simple version of this could be:
partial = (func, a...) ->

(b...) -> func a..., b...

f = (a,b,c,d) -> show "#{a} #{b} #{c} #{d}"
g = partial f, 1, 2
g 3, 4

The return value of partial is a function where the a... arguments have
been applied. When the returned function is called the b... arguments
are appended to the arguments of func.
equals10 = partial op['=='], 10
show map [1, 10, 100], equals10

Unlike traditional functional definitions, Underscore defines the order of
its arguments as array before action. That means we can not simply say:
square = (x) -> x * x
show map [[10, 100], [12, 16], [0, 1]],

partial map, square # Incorrect

Since the square function needs to be the second argument of the inner
map. But we can define another partial function that reverses its argu-
ments:
partialReverse = (func, a) -> (b) -> func b, a

mapSquared = partialReverse map, square
show map [[10, 100], [12, 16], [0, 1]], mapSquared

However it is again worthwhile to consider whether the intent of the pro-
gram is clearer when the functions are defined directly:
show map [[10, 100], [12, 16], [0, 1]],

(sublist) -> map sublist, (x) -> x * x

◦ • ◦
A trick that can be useful when you want to combine functions is func-
tion composition. At the start of this chapter I showed a function negate,
which applies the boolean not operator to the result of calling a function:

113



Functional Programming

negate = (func) ->
(args...) -> not func args...

This is a special case of a general pattern: call function A, and then apply
function B to the result. Composition is a common concept in mathemat-
ics. It can be caught in a higher-order function like this:
compose = (func1, func2) ->

(args...) -> func1 func2 args...

isUndefined = (value) -> value is undefined
isDefined = compose ((v) -> not v), isUndefined
show 'isDefined Math.PI = ' + isDefined Math.PI
show 'isDefined Math.PIE = ' + isDefined Math.PIE

In isDefined we are defining a new function without naming it. This can
be useful when you need to create a simple function to give to, for exam-
ple, map or reduce. However, when a function becomes more complex
than this example, it is usually shorter and clearer to define it by itself and
name it.

114



Searching

This chapter introduces new functional programming concepts and their
use in problem solving. We will go through the solution of two problems,
discussing some interesting algorithms and techniques along the way. To
make it pleasant to work with the functional abstractions, the functions in
the Underscore library are made directly available for use in the examples.
require './prelude'
globalize _

Using global functions is fine in an isolated environment, later when you
build reusable libraries or work in a project you should however fully qual-
ify all functions, this is explained in Modularity.

◦ • ◦
Let me introduce our first problem. Take a look at this map. It shows Hiva
Oa, a small tropical island in the Pacific Ocean.

115



Searching

The black lines are roads, and the numbers next to them are the lengths
of these roads. Imagine we need a program that finds the shortest route
between two points on Hiva Oa. How could we approach that? Think
about this for a moment.
No really. Do not just steamroll on to the next paragraph. Try to seriously
think of some ways you could do this, and consider the issues you would
come up against. When reading a technical book, it is way too easy to
just zoom over the text, nod solemnly, and promptly forget what you have
read. If you make a sincere effort to solve a problem, it becomes your
problem, and its solution will be more meaningful.

◦ • ◦
The first aspect of this problem is, again, representing our data. The in-
formation in the picture does not mean much to our computer. We could
try writing a program that looks at the map and extracts the information in
it… but that can get complicated. If we had twenty-thousand maps to in-
terpret, this would be a good idea, in this case we will do the interpretation
ourself and transcribe the map into a more computer-friendly format.
What does our program need to know? It has to be able to look up which
locations are connected, and how long the roads between them are. The
places and roads on the island form a graph, as mathematicians call it.
There are many ways to store graphs. A simple possibility is to just store
an array of road objects, each of which contains properties naming its two
endpoints and its length…
roads = [

{ point1: 'Point Kiukiu', point2: 'Hanaiapa', length: 19 }
{ point1: 'Point Kiukiu', point2: 'Mt Feani', length: 15 }

] # and so on

However, it turns out that the program, as it is working out a route, will
very often need to get a list of all the roads that start at a certain location,
like a person standing on a crossroads will look at a signpost and read
“Hanaiapa: 19km, Mount Feani: 15km”. It would be nice if this was easy
(and quick) to do.
With the representation given above, we have to sift through the whole list
of roads, picking out the relevant ones, every time we want this signpost
list. A better approach would be to store this list directly. For example,
use an object that associates place-names with signpost lists:

116



Searching

roads =
'Point Kiukiu': [ {to: 'Hanaiapa', distance: 19}

{to: 'Mt Feani', distance: 15}
{to: 'Taaoa', distance: 15} ]

'Taaoa': [ ] # et cetera

When we have this object, getting the roads that leave from Point Kiukiu
is just a matter of looking at roads['Point Kiukiu'].

◦ • ◦
However, this new representation does contain duplicate information: The
road between A and B is listed both under A and under B. The first repre-
sentation was already a lot of work to type in, this one is even worse.
Fortunately, we have at our command the computer’s talent for repetitive
work. We can specify the roads once, and have the correct data structure be
generated by the computer. First, initialise an empty object called roads,
and write a function makeRoad:
roads = {}
makeRoad = (from, to, length) ->

addRoad = (from, to) ->
roads[from] = [] if not (from of roads)
roads[from].push to: to, distance: length

addRoad from, to
addRoad to, from

Nice, huh? Notice how the inner function, addRoad, uses the same names
(from, to) for its parameters as the outer function. These will not interfere:
inside addRoad they refer to addRoad’s parameters, and outside it they refer
to makeRoad’s parameters.
The if statement in addRoad makes sure that there is an array of desti-
nations associated with the location named by from, if there is not one it
puts in an empty array. This way, the next line can assume there is such
an array and safely push the new road onto it.
Now the map information looks like this:
makeRoad 'Point Kiukiu', 'Hanaiapa', 19
makeRoad 'Point Kiukiu', 'Mt Feani', 15
makeRoad 'Point Kiukiu', 'Taaoa', 15
show roads

117



Searching

Exercise 26
In the above description, the string 'Point Kiukiu' still occurs three
times in a row. We could make our description even more succinct by
allowing multiple roads to be specified in one line.
Write a function makeRoads that takes any uneven number of argu-
ments. The first argument is always the starting point of the roads,
and every pair of arguments after that gives an ending point and a
distance.
Do not duplicate the functionality of makeRoad, but have makeRoads
call makeRoad to do the actual road-making.

You can verify the solution with this code that builds a data structure
matching the map of Hiva Oa.
roads = {}
makeRoads 'Point Kiukiu',

'Hanaiapa', 19, 'Mt Feani', 15, 'Taaoa', 15
makeRoads 'Airport',

'Hanaiapa', 6, 'Mt Feani', 5,
'Atuona', 4, 'Mt Ootua', 11

makeRoads 'Mt Temetiu',
'Mt Feani', 8, 'Taaoa', 4

makeRoads 'Atuona',
'Taaoa', 3, 'Hanakee pearl lodge', 1

makeRoads 'Cemetery',
'Hanakee pearl lodge', 6, 'Mt Ootua', 5

makeRoads 'Hanapaoa',
'Mt Ootua', 3

makeRoads 'Puamua',
'Mt Ootua', 13, 'Point Teohotepapapa', 14

show 'Roads from the Airport:'
show roads['Airport']

We managed to considerably shorten our description of the road informa-
tion by defining some convenient operations. You could say we expressed
the information more succinctly by expanding our vocabulary. Defining
a ‘little language’ like this is often a very powerful technique — when, at
any time, you find yourself writing repetitive or redundant code, stop and
try to come up with a vocabulary that makes it shorter and denser.

118



Searching

Redundant code is not only a bore to write, it is also error-prone, people
pay less attention when doing something that does not require them to
think. On top of that, repetitive code is hard to change, because structure
that is repeated a hundred times has to be changed a hundred times when
it turns out to be incorrect or suboptimal.

◦ • ◦
If you ran all the pieces of code above, you should now have a variable
named roads that contains all the roads on the island. When we need the
roads starting from a certain place, we could just do roads[place]. But
then, when someone makes a typo in a place name, which is not unlikely
with these names, he will get undefined instead of the array he expects,
and strange errors will follow. Instead, we will use a function that retrieves
the road arrays, and yells at us when we give it an unknown place name:
roadsFrom = (place) ->

found = roads[place]
return found if found?
throw new Error "No place named '#{place}' found."

try
show roadsFrom "Hanaiapa"
show roadsFrom "Hanalapa"

catch error
show "Oops #{error}"

◦ • ◦
Here is a first stab at a path-finding algorithm, the gambler’s method:
gamblerPath = (from, to) ->

randomInteger = (below) ->
Math.floor Math.random() * below

randomDirection = (from) ->
options = roadsFrom from
options[randomInteger(options.length)].to

path = []
loop

path.push from

119



Searching

break if from == to
from = randomDirection from

path

show gamblerPath 'Hanaiapa', 'Mt Feani'

At every split in the road, the gambler rolls his dice to decide which road
he shall take. If the dice sends him back the way he came, so be it. Sooner
or later, he will arrive at his destination, since all places on the island are
connected by roads.
The most confusing line is probably the one containing Math.random. This
function returns a pseudo-random19 number between 0 and 1. Try calling
it a few times from the console, it will (most likely) give you a different
number every time. The function randomInteger multiplies this number
by the argument it is given, and rounds the result down with Math.floor.
Thus, for example, randomInteger 3 will produce the number 0, 1, or 2.

◦ • ◦
The gambler’s method is the way to go for those who abhor structure and
planning, who desperately search for adventure. We set out to write a pro-
gram that could find the shortest route between places though, so some-
thing else will be needed.
A very straightforward approach to solving such a problem is called ‘gen-
erate and test’. It goes like this:

1. Generate all possible routes.
2. In this set, find the shortest one that actually connects the start point

to the end point.
Step two is not hard. Step one is a little problematic. If you allow routes
with circles in them, there is an infinite amount of routes. Of course, routes
with circles in them are unlikely to be the shortest route to anywhere, and
routes that do not start at the start point do not have to be considered either.
For a small graph like Hiva Oa, it should be possible to generate all non-
cyclic (circle-free) routes starting from a certain point.

◦ • ◦
19Computers are deterministic machines: They always react in the same way to the

input they receive, so they can not produce truly random values. Therefore, we have
to make do with series of numbers that look random, but are in fact the result of some
complicated deterministic computation.

120



Searching

But first, we will need to expand our vocabulary so we can deal with the
problem in a natural way. The words we need exist in CoffeeScript and
in the Underscore library, but we will go through how they can be im-
plemented, so it is clear how they function and what they do. The exam-
ple implementations will be named with an underscore in front of their
names to show they are internal and not used in the rest of the book.
You can compare with the implementations in the Underscore library in
prelude/underscore.coffee.
The first is a function named _member, which is used to determine whether
an element is found within an array. The route will be kept as an array of
names, and when arriving at a new place, the algorithm could logically
call _member to check whether we have been at that place already. It could
look like this:
_member = (array, value) ->

found = false
array.forEach (element) ->

if element == value
found = true

found
show _member [6, 7, "Bordeaux"], 7

However, this will go over the whole array, even if the value is found
immediately at the first position. What wastefulness. When using a for
loop, you can use the break statement to jump out of it, but in a forEach
construct this will not work, because the body of the loop is a function,
and break statements do not jump out of functions. One solution could be
to adjust forEach to recognise a certain kind of exceptions as signalling a
break. Something like _forEach here:
_break = toString: -> "Break"
_forEach = (array, action) ->

try
for element in array

action element
catch exception

if exception != _break
throw exception

show _forEach [1..3], (n) -> n*n
# Which btw could in CoffeeScript be written as
show (i*i for i in [1..3])

121



Searching

Now, if the action function throws _break, _forEach will absorb the ex-
ception and stop looping. The object stored in the variable _break is used
purely as a thing to compare with. The only reason I gave it a toString
property is that this might be useful to figure out what kind of strange value
you are dealing with if you somehow end up with a _break exception out-
side of a _forEach. Now _member can be defined as:
_member = (array, value) ->

found = false
_forEach array, (element) ->

if element == value
found = true
throw _Break

found

Of course we could also have defined _memberwithout using the _forEach:
_member = (array, value) ->

found = false
for element in array

if element == value
found = true
break

found

This function exists in Underscore as include aka contains. But it is
such a common operation that it is in fact built into CoffeeScript with the
in operator (outside of a for … in). Using in is the preferred way to test
for array membership.
show 7 in [6, 7, "Bordeaux"]

◦ • ◦
Having a way to break out of _forEach loops can be very useful, but in
the case of the _member function the result is still rather ugly, because you
need to specifically store the result and later return it. We could add yet
another kind of exception, _return, which can be given a value property,
and have _forEach return this value when such an exception is thrown, but
this would be terribly ad-hoc and messy. What we really need is a whole
new higher-order function, called any (or sometimes some). It exists in
Underscore under both names. A definition more or less looks like this:

122



Searching

_any = (array, test) ->
for element in array

if test element
return true

false

# Using Underscore
show any [3, 4, 0, -3, 2, 1], (n) -> n < 0

# Redefining member with any
_member = (array, value) ->

partial = (func, a...) -> (b...) -> func a..., b...
any array, partial ((a,b) -> a == b), value

show _member ["Fear", "Loathing"], "Denial"

any goes over the elements in an array, from left to right, and applies the
test function to them. The first time this returns a true-ish value, it re-
turns that value. If no true-ish value is found, false is returned. Calling
any(test, array) is more or less equivalent to doing test(array[0]) ||
test(array[1]) || ... etcetera.

◦ • ◦
Just like && is the companion of ||, any has a companion called every:
_every = (array, test) ->

for element in array
if not test element

return false
true

show every [1, 2, -1], (n) -> n != 0 # Using Underscore

◦ • ◦
Another function we will need is flatten. This function takes an array of
arrays, and puts the elements of the arrays together in one big array.
_flatten = (array) ->

result = []
for element in array

if isArray element
result = result.concat _flatten element

else

123



Searching

result.push element
result

# Using Underscore
show flatten [[1], [2, [3, 4]], [5, 6]]

Exercise 27
Before starting to generate routes, we need one more higher-order
function. This one is called filter (in Underscore it is also named
select). Like map, it takes a function and an array as arguments, and
produces a new array, but instead of putting the results of calling the
function in the new array, it produces an array with only those val-
ues from the old array for which the given function returns a true-like
value. Write a _filter function that shows how it works.

Imagine what an algorithm to generate routes would look like — it starts at
the starting location, and starts to generate a route for every road leaving
there. At the end of each of these roads it continues to generate more
routes. It does not run along one road, it branches out. Because of this,
recursion is a natural way to model it.
possibleRoutes = (from, to) ->

findRoutes = (route) ->
notVisited = (road) ->

not (road.to in route.places)
continueRoute = (road) ->

findRoutes
places: route.places.concat([road.to]),
length: route.length + road.distance

end = route.places[route.places.length - 1]
if end == to

[route]
else

flatten map filter(roadsFrom(end), notVisited),
continueRoute

findRoutes {places: [from], length: 0}

show (possibleRoutes 'Point Teohotepapapa',

124



Searching

'Point Kiukiu').length
show possibleRoutes 'Hanapaoa', 'Mt Ootua'

The function returns an array of route objects, each of which contains an
array of places that the route passes, and a length. findRoutes recursively
continues a route, returning an array with every possible extension of that
route. When the end of a route is the place where we want to go, it just
returns that route, since continuing past that place would be pointless. If it
is another place, we must go on. The flatten/map/filter line is probably
the hardest to read. This is what it says: ‘Take all the roads going from
the current location, discard the ones that go to places that this route has
already visited. Continue each of these roads, which will give an array of
finished routes for each of them, then put all these routes into a single big
array that we return.’
That line does a lot. This is why good abstractions help: They allow you
to say complicated things without typing pages of code.
Does this not recurse forever, seeing how it calls itself (via continueRoute)?
No, at some point, all outgoing roads will go to places that a route has al-
ready passed, and the result of filter will be an empty array. Mapping
over an empty array produces an empty array, and flattening that still gives
an empty array. So calling findRoutes on a dead end produces an empty
array, meaning ‘there are no ways to continue this route’.
Notice that places are appended to routes by using concat, not push. The
concat method creates a new array, while push modifies the existing ar-
ray. Because the function might branch off several routes from a single
partial route, we must not modify the array that represents the original
route, because it must be used several times.

Exercise 28
Now that we have all possible routes, let us try to find the shortest one.
Write a function shortestRoute that, like possibleRoutes, takes the
names of a starting and ending location as arguments. It returns a
single route object, of the type that possibleRoutes produces.

Let us see what route our algorithm comes up with between Point Kiukiu
and Point Teohotepapapa…

125



Searching

show (shortestRoute 'Point Kiukiu',
'Point Teohotepapapa').places

◦ • ◦
On a small island like Hiva Oa, it is not too much work to generate all
possible routes. If you try to do that on a reasonably detailed map of,
say, Belgium, it is going to take an absurdly long time, not to mention
an absurd amount of memory. Still, you have probably seen those online
route-planners. These give you a more or less optimal route through a
gigantic maze of roads in just a few seconds. How do they do it?
If you are paying attention, you may have noticed that it is not necessary
to generate all routes all the way to the end. If we start comparing routes
while we are building them, we can avoid building this big set of routes,
and, as soon as we have found a single route to our destination, we can
stop extending routes that are already longer than that route.

◦ • ◦
To try this out, we will use a 20 by 20 grid as our map:

126



Searching

What you see here is an elevation map of a mountain landscape. The
yellowish spots are the peaks, and the dark spots the valleys. The area
is divided into squares with a size of a hundred meters. We have at our
disposal a function heightAt, which can give us the height, in meters, of
any square on that map, where squares are represented by objects with x
and y properties.
show heightAt x: 0, y: 0
show heightAt x: 11, y: 18

◦ • ◦
We want to cross this landscape, on foot, from the top left to the bottom
right. A grid can be approached like a graph. Every square is a node,
which is connected to the squares around it.
We do not like wasting energy, so we would prefer to take the easiest route
possible. Going uphill is heavier than going downhill, and going down-
hill is heavier than going level20. This function calculates the amount of
‘weighted meters’, between two adjacent squares, which represents how
tired you get from walking (or climbing) between them. Going uphill is
counted as twice as heavy as going downhill.
weightedDistance = (pointA, pointB) ->

heightDifference =
heightAt(pointB) - heightAt(pointA)

climbFactor = if heightDifference < 0 then 1 else 2
flatDistance =

if pointA.x == pointB.x or pointA.y == pointB.y
100

else
141

flatDistance + climbFactor * Math.abs heightDifference
show weightedDistance (x: 0, y: 0), (x: 1, y: 1)

Note the flatDistance calculation. If the two points are on the same
row or column, they are right next to each other, and the distance between
them is a hundred meters. Otherwise, they are assumed to be diagonally
adjacent, and the diagonal distance between two squares of this size is a
hundred times the square root of two, which is approximately 141. One is
not allowed to call this function for squares that are further than one step
apart. (It could double-check this… but it is too lazy.)
20No really, it is.

127



Searching

◦ • ◦
Points on the map are represented by objects containing x and y properties.
These three functions are useful when working with such objects:
point = (x, y) -> {x, y} # Same as {x: x, y: y}
addPoints = (a, b) -> point a.x + b.x, a.y + b.y
samePoint = (a, b) -> a.x == b.x and a.y == b.y

show samePoint addPoints(point(10, 10), point(4, -2)),
point(14, 8)

Exercise 29
If we are going to find routes through this map, we will again need a
function to create ‘signposts’, lists of directions that can be taken from
a given point. Write a function possibleDirections, which takes a
point object as argument and returns an array of nearby points. We can
only move to adjacent points, both straight and diagonally, so squares
have a maximum of eight neighbours. Take care not to return squares
that lie outside of the map. For all we know the edge of the map might
be the edge of the world.

To find a route on this map without having our browser cut off the program
because it takes too long to finish, we have to stop our amateurish attempts
and implement a serious algorithm. A lot of work has gone into problems
like this in the past, and many solutions have been designed (some bril-
liant, others useless). A very popular and efficient one is called A* (pro-
nounced A-star). We will spend the rest of the chapter implementing an
A* route-finding function for our map.
Before I get to the algorithm itself, let me tell you a bit more about the
problem it solves. The trouble with searching routes through graphs is
that, in big graphs, there are an awful lot of them. Our Hiva Oa path-
finder showed that, when the graph is small, all we needed to do was to
make sure our paths did not revisit points they had already passed. On our
new map, this is not enough anymore.
The fundamental problem is that there is too much room for going in the
wrong direction. Unless we somehow manage to steer our exploration of
paths towards the goal, a choice we make for continuing a given path is

128



Searching

more likely to go in the wrong direction than in the right direction. If you
keep generating paths like that, you end up with an enormous amount of
paths, and even if one of them accidentally reaches the end point, you do
not know whether that is the shortest path.
So what you want to do is explore directions that are likely to get you to
the end point first. On a grid like our map, you can get a rough estimate of
how good a path is by checking how long it is and how close its end is to
the end point. By adding path length and an estimate of the distance it still
has to go, you can get a rough idea of which paths are promising. If you
extend promising paths first, you are less likely to waste time on useless
ones.

◦ • ◦
But that still is not enough. If our map was of a perfectly flat plane, the path
that looked promising would almost always be the best one, and we could
use the above method to walk right to our goal. But we have valleys and
hillsides blocking our paths, so it is hard to tell in advance which direction
will be the most efficient path. Because of this, we still end up having to
explore way too many paths.
To correct this, we can make clever use of the fact that we are constantly
exploring the most promising path first. Once we have determined that
path A is the best way to get to point X, we can remember that. When,
later on, path B also gets to point X, we know that it is not the best route,
so we do not have to explore it further. This can prevent our program from
building a lot of pointless paths.

◦ • ◦
The algorithm, then, goes something like this…
There are two pieces of data to keep track of. The first one is called the
open list, it contains the partial routes that must still be explored. Each
route has a score, which is calculated by adding its length to its estimated
distance from the goal. This estimate must always be optimistic, it should
never overestimate the distance. The second is a set of nodes that we have
seen, together with the shortest partial route that got us there. This one we
will call the reached list. We start by adding a route that contains only the
starting node to the open list, and recording it in the reached list.
Then, as long as there are any nodes in the open list, we take out the one
that has the lowest (best) score, and find the ways in which it can be contin-
ued (by calling possibleDirections). For each of the nodes this returns,

129



Searching

we create a new route by appending it to our original route, and adjusting
the length of the route using weightedDistance. The endpoint of each of
these new routes is then looked up in the reached list.
If the node is not in the reached list yet, it means we have not seen it before,
and we add the new route to the open list and record it in the reached list. If
we had seen it before, we compare the score of the new route to the score
of the route in the reached list. If the new route is shorter, we replace the
existing route with the new one. Otherwise, we discard the new route,
since we have already seen a better way to get to that point.
We continue doing this until the route we fetch from the open list ends at
the goal node, in which case we have found our route, or until the open
list is empty, in which case we have found out that there is no route. In our
case the map contains no unsurmountable obstacles, so there is always a
route.
How do we know that the first full route that we get from the open list is
also the shortest one? This is a result of the fact that we only look at a route
when it has the lowest score. The score of a route is its actual length plus
an optimistic estimate of the remaining length. This means that if a route
has the lowest score in the open list, it is always the best route to its current
endpoint — it is impossible for another route to later find a better way to
that point, because if it were better, its score would have been lower.

◦ • ◦
Try not to get frustrated when the fine points of why this works are still
eluding you. When thinking about algorithms like this, having seen ‘some-
thing like it’ before helps a lot, it gives you a point of reference to compare
the approach to. Beginning programmers have to do without such a point
of reference, which makes it rather easy to get lost. Just realise that this is
advanced stuff, globally read over the rest of the chapter, and come back
to it later when you feel like a challenge.

◦ • ◦
I am afraid that, for one aspect of the algorithm, I am going to have to
invoke magic again. The open list needs to be able to hold a large amount
of routes, and to quickly find the route with the lowest score among them.
Storing them in a normal array, and searching through this array every
time, is way too slow, so I give you a data structure called a binary heap.
You create them with new, just like Date objects, giving them a function

130



Searching

that is used to ‘score’ its elements as argument. The resulting object has
the methods push and pop, just like an array, but pop always gives you the
element with the lowest score, instead of the one that was pushed last.
bh = require './A2-BinaryHeap'
globalize bh

heap = new BinaryHeap()
forEach [2, 4, 5, 1, 6, 3], (number) ->

heap.push number

while heap.size() > 0
show heap.pop()

Binary Heaps discusses the implementation of this data structure, which is
quite interesting. After you have read Object Orientation, you might want to
take a look at it.

◦ • ◦
The need to squeeze out as much efficiency as we can has another effect.
The Hiva Oa algorithm used arrays of locations to store routes, and copied
them with the concat method when it extended them. This time, we can
not afford to copy arrays, since we will be exploring lots and lots of routes.
Instead, we use a ‘chain’ of objects to store a route. Every object in the
chain has some properties, such as a point on the map, and the length of
the route so far, and it also has a property that points at the previous object
in the chain. Something like this:

131



Searching

Where the blue circles are the relevant objects, and the lines represent
properties — the end points are the values of the property. Object A is the
start of a route here. Object B is used to build a new route, which continues
from A. It has a property, which we will call from, pointing at the route it is
based on. When we need to reconstruct a route later, we can follow these
properties to find all the points that the route passed. Note that object B is
part of two routes, one that ends in D and one that ends in E. When there
are a lot of routes, this can save us much storage space — every new route
only needs one new object for itself, the rest is shared with other routes
that started the same way.

Exercise 30
Write a function estimatedDistance that gives an optimistic estimate
of the distance between two points. It does not have to look at the
height data, but can assume a flat map. Remember that we are only
travelling straight and diagonally, and that we are counting the diag-
onal distance between two squares as 141.

Exercise 31
We will use a binary heap for the open list. What would be a good
data structure for the reached list? This one will be used to look up

132



Searching

routes, given a pair of x, y coordinates. Preferably in a way that is
fast. Write three functions, makeReachedList, storeReached, and
findReached. The first one creates your data structure, the second
one, given a reached list, a point, and a route, stores a route in it, and
the last one, given a reached list and point, retrieves a route or returns
undefined to indicate that no route was found for that point.

Defining a type of data structure by providing a set of functions to create
and manipulate such structures is a useful technique. It makes it possible
to ‘isolate’ the code that makes use of the structure from the details of the
structure itself. Note that, no matter which of the above two implemen-
tations is used, code that needs a reached list works in exactly the same
way. It does not care what kind of objects are used, as long as it gets the
results it expected.
This will be discussed in much more detail in Object Orientation, where we will
learn to make object types like BinaryHeap, which are created using new
and have methods to manipulate them.

◦ • ◦
Here we finally have the actual path-finding function:
findRoute = (from, to) ->

routeScore = (route) ->
if route.score is undefined

route.score = route.length +
estimatedDistance route.point, to

route.score

addOpenRoute = (route) ->
open.push route
storeReached reached, route.point, route

open = new BinaryHeap routeScore
reached = makeReachedList()
addOpenRoute point: from, length: 0

while open.size() > 0
route = open.pop()

133



Searching

if samePoint route.point, to
return route

forEach possibleDirections(route.point),
(direction) ->

known = findReached reached, direction
newLength = route.length +

weightedDistance route.point, direction
if not known or known.length > newLength

if known
open.remove known

addOpenRoute
point: direction,
from: route,
length: newLength

return null

First, it creates the data structures it needs, one open list and one reached
list. routeScore is the scoring function given to the binary heap. Note
how it stores its result in the route object, to prevent having to re-calculate
it multiple times.
addOpenRoute is a convenience function that adds a new route to both
the open list and the reached list. It is immediately used to add the start
of the route. Note that route objects always have the properties point,
which holds the point at the end of the route, and length, which holds the
current length of the route. Routes which are more than one square long
also have a from property, which points at their predecessors.
The while loop, as was described in the algorithm, keeps taking the lowest-
scoring route from the open list and checks whether this gets us to the goal
point. If it does not, we must continue by expanding it. This is what the
forEach takes care of. It looks up this new point in the reached list. If it is
not found there, or the node found has a longer length that the new route,
a new route object is created and added to the open list and reached list,
and the existing route (if any) is removed from the open list.
What if the route in known is not on the open list? It has to be, because
routes are only removed from the open list when they have been found to
be the most optimal route to their endpoint. If we try to remove a value
from a binary heap that is not on it, it will throw an exception, so if my
reasoning is wrong, we will probably see an exception when running the

134



Searching

function.
When code gets complex enough to make you doubt certain things about it,
it is a good idea to add some checks that raise exceptions when something
goes wrong. That way, you know that there are no weird things happening
‘silently’, and when you break something, you immediately see what you
broke.

◦ • ◦
Note that this algorithm does not use recursion, but still manages to ex-
plore all those branches. The open list more or less takes over the role
that the function call stack played in the recursive solution to the Hiva Oa
problem — it keeps track of the paths that still have to be explored. Every
recursive algorithm can be rewritten in a non-recursive way by using a
data structure to store the ‘things that must still be done’.

◦ • ◦
Well, let us try our path-finder:
route = findRoute point(0, 0), point(19, 19)

If you ran all the code above, and did not introduce any errors, that call,
though it might take an instant to run, should give us a route object. This
object is rather hard to read. That can be helped by using the showRoute
function which will show a route as a list of coordinates.
showRoute route

You can also pass multiple routes to showRoute, which can be useful when
you are, for example, trying to plan a scenic route, which must include the
beautiful viewpoint at 11, 17.
showRoute findRoute(point( 0, 0), point(11, 17)),

findRoute(point(11, 17), point(19, 19))

135



Searching

You can also display routes on a map with renderRoute. A web page with
the map is served to your browser, then the route points are transferred via
WebSockets to a snippet of CoffeeScript on the page that uses a canvas to
draw the points on top of the map.
renderRoute findRoute(point( 0, 0), point(11, 17)),

findRoute(point(11, 17), point(19, 19))

◦ • ◦
Variations on the theme of searching an optimal route through a graph
can be applied to many problems, many of which are not at all related
to finding a physical path. For example, a program that needs to solve a
puzzle of fitting a number of blocks into a limited space could do this by
exploring the various ‘paths’ it gets by trying to put a certain block in a
certain place. The paths that ends up with insufficient room for the last
blocks are dead ends, and the path that manages to fit in all blocks is the
solution.

136



Object-oriented Programming

In the early nineties, a thing called object-oriented programming stirred up
the software industry. Most of the ideas behind it were not really new at
the time, but they had finally gained enough momentum to start rolling, to
become fashionable. Books were being written, courses given, program-
ming languages developed. All of a sudden, everybody was extolling the
virtues of object-orientation, enthusiastically applying it to every prob-
lem, convincing themselves they had finally found the right way to write
programs.
These things happen a lot. When a process is hard and confusing, people
are always on the lookout for a magic solution. When something looking
like such a solution presents itself, they are prepared to become devoted
followers. For many programmers — even today — object-orientation
(or their view of it) is the gospel. When a program is not ‘truly object-
oriented’, whatever that means, it is considered decidedly inferior.
Few fads have managed to stay popular for as long as this one, though.
Object-orientation’s longevity can largely be explained by the fact that the
ideas at its core are very solid and useful. In this chapter, we will discuss
these ideas, along with CoffeeScript’s (rather succinct) take on them. The
above paragraphs are by no means meant to discredit these ideas. What I
want to do is warn the reader against developing an unhealthy attachment
to them.

◦ • ◦
As the name suggests, object-oriented programming is related to objects.
The central ideas are encapsulation, inheritance, and higher-order pro-
gramming (polymorphism). So far, we have used objects as loose aggre-
gations of values, adding and altering their properties whenever we saw fit.
In an object-oriented approach, objects are viewed as little worlds of their
own, and the outside world may touch them only through a limited and
well-defined interface, a number of specific methods and properties. The
‘reached list’ we used at the end of Searching is an example of this: We used

137



Object Orientation

only three functions, makeReachedList, storeReached, and findReached
to interact with it. These three functions form an interface for such objects.
The Date, Error, and BinaryHeap objects we have seen also work like
this. Instead of providing regular functions for working with the objects,
they provide a way to create such objects, using the new keyword, and a
number of methods and properties that provide the rest of the interface.

◦ • ◦
One way to give an object methods is to attach function values to it.
rabbit = {}
rabbit.speak = (line) ->

show "The rabbit says '#{line}'"
rabbit.speak "Well, now you're asking me."

In most cases, the method will need to know who it should act on. For
example, if there are different rabbits, the speak method must indicate
which rabbit is speaking. For this purpose, there is a special variable called
this, which is always present when a function is called, and which points
at the relevant object when the function is called as a method. A function
is called as a method when it is looked up as a property, and immediately
called, as in object.method(). Since it is very common to use this inside
an object, it can be abbreviated from this.property or this.method()
to @property or @method().
speak = (line) ->

show "The #{this.adjective} rabbit says '#{line}'"

whiteRabbit = adjective: "white", speak: speak
fatRabbit = adjective: "fat", speak: speak

whiteRabbit.speak "Oh my ears and whiskers, " +
"how late it's getting!"

fatRabbit.speak "I could sure use a carrot right now."

◦ • ◦
I can now clarify the mysterious first argument to the apply method, for
which we always used null in Functional Programming. This argument can be
used to specify the object that the function must be applied to. For non-
method functions, this is irrelevant, hence the null.

138



Object Orientation

speak.apply fatRabbit, ['Yum.']

Functions also have a call method, which is similar to apply, but you can
give the arguments for the function separately instead of as an array:
speak.call fatRabbit, 'Burp.'

◦ • ◦
It is common in object oriented terminology to refer to instances of some-
thing as an object. The whiteRabbit and fatRabbit can be seen as dif-
ferent instances of a more general Rabbit concept. In CoffeeScript such
concepts are termed a class.
class Rabbit

constructor: (@adjective) ->
speak: (line) ->

show "The #{@adjective} rabbit says '#{line}'"

whiteRabbit = new Rabbit "white"
fatRabbit = new Rabbit "fat"

whiteRabbit.speak "Hurry!"
fatRabbit.speak "Tasty!"

It is a convention, among CoffeeScript programmers, to start the names of
classes with a capital letter. This makes it easy to distinguish them from
object instances and functions.

◦ • ◦
The new keyword provides a convenient way of creating new objects.
When a function is called with the word new in front of it, its this vari-
able will point at a new object, which it will automatically return (unless
it explicitly returns something else). Functions used to create new objects
like this are called constructors.
The constructor for the Rabbit class is constructor: (@adjective) ->.
The @adjective argument to the constructor does two things: It declares
adjective as a property on this and it uses ‘pattern matching’ i.e. the
same name to assign the argument named adjective to a property on this
that is also named adjective. It could have been written in full form as
constructor: (adjective) -> this.adjective = adjective.

139



Object Orientation

killerRabbit = new Rabbit 'killer'
killerRabbit.speak 'GRAAAAAAAAAH!'
show killerRabbit

When new Rabbit is called with the 'killer' argument, the argument
is assigned to a property named adjective. So show killerRabbit ⇒
{adjective: 'killer'}.
Why is the new keyword even necessary? After all, we could have simply
written this:
makeRabbit = (adjective) ->

adjective: adjective
speak: (line) -> show adjective + ': ' + line

blackRabbit = makeRabbit 'black'

But that is not entirely the same. new does a few things behind the scenes.
For one thing, our killerRabbit has a property called constructor, which
points at the Rabbit function that created it. blackRabbit also has such a
property, but it points at the Object function. They even have name prop-
erties so we can check them: show killerRabbit.constructor.name⇒
Rabbit and show blackRabbit.constructor.name⇒ Object.

◦ • ◦
The objects that are created, whiteRabbit and fatRabbit, are specific
instances. The whiteRabbit is not all kinds of white rabbits just a single
one that happen to have the name whiteRabbit. If you want to create a
class of say weight conscious rabbits then the extends keyword can help
you accomplish that.
class WeightyRabbit extends Rabbit

constructor: (adjective, @weight) ->
super adjective

adjustedWeight: (relativeGravity) ->
(@weight * relativeGravity).toPrecision 2

tinyRabbit = new WeightyRabbit "tiny", 1.01
jumboRabbit = new WeightyRabbit "jumbo", 7.47

moonGravity = 1/6
jumboRabbit.speak "Carry me, I weigh
#{jumboRabbit.adjustedWeight(moonGravity)} stones"
tinyRabbit.speak "He ain't heavy, he is my brother"

140



Object Orientation

The call super adjective passes the argument on to the Rabbit construc-
tor. A method in a derived class can with super call upon a method of the
same name in its parent class.

◦ • ◦
Inheritance is useful because different types can share a single implemen-
tation of an algorithm. But it comes with a price-tag: the derived classes
become tightly coupled to the parent class. Normally you make each part
of a system as independent as possible, for example avoiding global vari-
ables and using arguments instead. That way you can read and understand
each part in isolation and you can change them with little risk of breaking
other parts of the system.
Due to the tight coupling that inheritance introduces it can be difficult to
change a parent class without inadvertently risk breaking derived classes.
This is called the fragile base class problem. A class that has no child
classes and is only used through its published methods and properties can
normally be changed quite freely — as long as the published methods and
properties stay the same. When a class derives from it, then the child
class may depend on the internal behaviour of the parent and it becomes
problematic to change the base class.
To understand a derived class you will often have to understand the parent
first. The implementation is distributed, instead of reading down through
a function, you may have to look in different places where a class and its
parent and their parent… implement each their part of the combined logic.
Lets look at an example that matters — the balance on your bank account.
class Account

constructor: -> @balance = 0
transfer: (amount) -> @balance += amount
getBalance: -> @balance
batchTransfer: (amtList) ->

for amount in amtList
@transfer amount

yourAccount = new Account()
oldBalance = yourAccount.getBalance()
yourAccount.transfer salary = 1000
newBalance = yourAccount.getBalance()
show "Books balance:
#{salary == newBalance - oldBalance}."

141



Object Orientation

Hopefully this only shows the principle of how your bank has imple-
mented its accounts. An account starts out with a zero balance, money
can be credited (positive transfer) and debited (negative transfer), the bal-
ance can be shown and multiple transfers can be handled.
Other parts of the system can balance the books by checking that transfers
match the differences on the accounts. Those parts of the system were
unfortunately not known to the developer of the AccountWithFee class.
class AccountWithFee extends Account

fee: 5
transfer: (amount) ->

super amount - @fee
# feeAccount.transfer @fee

yourAccount = new AccountWithFee()
oldBalance = yourAccount.getBalance()
yourAccount.transfer salary = 1000
newBalance = yourAccount.getBalance()
show "Books balance:
#{salary == newBalance - oldBalance}."

The books no longer balance. The issue is that the AccountWithFee class
has violated what is called the substitution principle. It is a patch of the
existing Account class and it breaks programs that assume that all account
classes behave in a certain way. In a system with thousands of classes
such patches can cause severe problems. To avoid this kind of problem it
is up to the developer to ensure that inherited classes can fully substitute
their parent classes.
To avoid excessive fraudulent transactions when a card is lost or stolen,
the bank has implemented a system which checks that withdrawals do not
exceed a daily limit. The LimitedAccount class checks each transfer,
reduces the @dailyLimit and reports an error if it is exceeded.
class LimitedAccount extends Account

constructor: -> super; @resetLimit()
resetLimit: -> @dailyLimit = 50
transfer: (amount) ->

if amount < 0 and (@dailyLimit += amount) < 0
throw new Error "You maxed out!"

else
super amount

142



Object Orientation

lacc = new LimitedAccount()
lacc.transfer 50
show "Start balance #{lacc.getBalance()}"

try lacc.batchTransfer [-1..-10]
catch error then show error.message
show "After batch balance #{lacc.getBalance()}"

Your bank is so successful that batchTransfer has to be speeded up (a
real version would involve database updates). The developer, that got
the task of making batchTransfer faster, had been on vacation when the
LimitedAccount class was implemented and did not see it among the thou-
sands of other classes in the system.
class Account

constructor: -> @balance = 0
transfer: (amount) -> @balance += amount
getBalance: -> @balance
batchTransfer: (amtList) ->

add = (a,b) -> a+b
sum = (list) -> reduce list, add, 0
@balance += sum amtList

class LimitedAccount extends Account
constructor: -> super; @resetLimit()
resetLimit: -> @dailyLimit = 50
transfer: (amount) ->

if amount < 0 and (@dailyLimit += amount) < 0
throw new Error "You maxed out!"

else
super amount

lacc = new LimitedAccount()
lacc.transfer 50
show "Starting with #{lacc.getBalance()}"

try lacc.batchTransfer [-1..-10]
catch error then show error.message
show "After batch balance #{lacc.getBalance()}"

Instead of the previous implementation that called transfer each time, the
whole batch is added together and the balance is directly updated. That

143



Object Orientation

made batchTransfer much faster, but it also broke the LimitedAccount
class. It is an example of the fragile base class problem. In this limited
example it is easy to spot the issue, in a large system it can cause consid-
erable headache.
Using inheritance in the right way requires careful and thoughtful pro-
gramming. If your child classes are type compatible with their parent
then you are adhering to the substitution principle. Usually using owner-
ship is more appropriate, that is when a class has an instance of another
class inside it and uses its public interface.
It is a common convention in CoffeeScript to use an _ in front of methods
that are to be considered private.

◦ • ◦
Where did the constructor property come from? It is part of the proto-
type of a rabbit. Prototypes are a powerful, if somewhat confusing, part of
the way CoffeeScript objects work. Every object is based on a prototype,
which gives it a set of inherent properties. Simple objects are based on the
most basic prototype, which is associated with the Object constructor. In
fact, typing {} is equivalent to typing new Object().
simpleObject = {}
show simpleObject.constructor
show simpleObject.toString

toString is a method that is part of the Object prototype. This means
that all simple objects have a toString method, which converts them to a
string. Our rabbit objects are based on the prototype associated with the
Rabbit constructor. You can use a constructor’s prototype property to
get access to, well, their prototype:
show Rabbit.prototype
show Rabbit.prototype.constructor.name
Rabbit.prototype.speak 'I am generic'
Rabbit::speak 'I am not initialized'

Instead of Rabbit.prototype.speak you can write Rabbit::speak. Every
function automatically gets a prototype property, whose constructor prop-
erty points back at the function. Because the rabbit prototype is itself an
object, it is based on the Object prototype, and shares its toString.
show killerRabbit.toString == simpleObject.toString

144



Object Orientation

◦ • ◦
Even though objects seem to share the properties of their prototype, this
sharing is one-way. The properties of the prototype influence the object
based on it, but the properties of this object never change the prototype.
The precise rules are this: When looking up the value of a property, Coffee-
Script first looks at the properties that the object itself has. If there is a
property that has the name we are looking for, that is the value we get. If
there is no such property, it continues searching the prototype of the ob-
ject, and then the prototype of the prototype, and so on. If no property is
found, the value undefined is given. On the other hand, when setting the
value of a property, CoffeeScript never goes to the prototype, but always
sets the property in the object itself.
Rabbit::teeth = 'small'
show killerRabbit.teeth
killerRabbit.teeth = 'long, sharp, and bloody'
show killerRabbit.teeth
show Rabbit::teeth

This does mean that the prototype can be be used at any time to add new
properties and methods to all objects based on it. For example, it might
become necessary for our rabbits to dance.
Rabbit::dance = ->

show "The #{@adjective} rabbit dances a jig."
killerRabbit.dance()

And, as you might have guessed, the prototypical rabbit is the perfect place
for values that all rabbits have in common, such as the speakmethod. Here
is a new approach to the Rabbit constructor:
Rabbit = (adjective) ->

@adjective = adjective

Rabbit::speak = (line) ->
show "The #{@adjective} rabbit says '#{line}'"

hazelRabbit = new Rabbit "hazel"
hazelRabbit.speak "Good Frith!"

◦ • ◦

145



Object Orientation

The fact that all objects have a prototype and receive some properties from
this prototype can be tricky. It means that using an object to store a set of
things, such as the cats from Data Structures, can go wrong. If, for example,
we wondered whether there is a cat called 'constructor', we would have
checked it like this:
noCatsAtAll = {}
if "constructor" of noCatsAtAll

show "Yes, there is a cat called 'constructor'."

This is problematic. A related problem is that it can often be practi-
cal to extend the prototypes of standard constructors such as Object and
Array with new useful functions. For example, we could give all objects
a method called allProperties, which returns an array with the names
of the (non-hidden) properties that the object has:
Object::allProperties = ->

for property of this
property

test = x: 10, y: 3
show test.allProperties()

And that immediately shows the problem. Now that the Object prototype
has a property called allProperties, looping over the properties of any
object, using for and of, will also give us that shared property, which is
generally not what we want. We are interested only in the properties that
the object itself has.
Fortunately, there is a way to find out whether a property belongs to the
object itself or to one of its prototypes. Every object has a method called
hasOwnProperty, which tells us whether the object has a property with a
given name. When looping over the properties of an object CoffeeScript
provides a keyword own so we are saved from using a clumsy if test on
each property. Using own, we can write an ownProperties method like
this:
Object::ownProperties = ->

for own property of this
property

test = 'Fat Igor': true, 'Fireball': true
show test.ownProperties()

146



Object Orientation

And of course, we can abstract that into a higher-order function. Note that
the action function is called with both the name of the property and the
value it has in the object.
forEachOf = (object, action) ->

for own property, value of object
action property, value

chimera = head: "lion", body: "goat", tail: "snake"
forEachOf chimera, (name, value) ->

show "The #{name} of a #{value}."

But, what if we find a cat named hasOwnProperty? (You never know.)
It will be stored in the object, and the next time we want to go over the
collection of cats, calling object.hasOwnProperty will fail, because that
property no longer points at a function value. This can be solved by doing
something ugly:
forEachIn = (object, action) ->

for property of object
if (Object::hasOwnProperty.call(object, property))

action property, object[property]

test = name: "Mordecai", hasOwnProperty: "Uh-oh"
forEachIn test, (name, value) ->

show "Property #{name} = #{value}"

Here, instead of using the method found in the object itself, we get the
method from the Object prototype, and then use call to apply it to the
right object. Unless someone actually messes with the Object.prototype
method (do not do that), this should work correctly.
for own property, value of test

show "Property #{property} = #{value}"

Fortunately the own keyword saves the day even in this situation, so it is
the right thing to use.

◦ • ◦
hasOwnProperty can also be used in those situations where we have been
using the of operator to see whether an object has a specific property.
There is one more catch, however. We saw in Data Structures that some prop-
erties, such as toString, are ‘hidden’, and do not show up when going

147



Object Orientation

over properties with for/of. It turns out that browsers in the Gecko fam-
ily (Firefox, most importantly) give every object a hidden property named
__proto__, which points to the prototype of that object. hasOwnProperty
will return true for this one, even though the program did not explicitly
add it. Having access to the prototype of an object can be very convenient,
but making it a property like that was not a very good idea. Still, Firefox
is a widely used browser, so when you write a program for the web you
have to be careful with this.
The advice here is not to name any of your own properties with dou-
ble underscore since they then can clash with system specific details like
__proto__. As mentioned before identifiers beginning with one under-
score is fine and used to indicate something private to your implementa-
tion. There is a method propertyIsEnumerable, which returns false for
hidden properties, and which can be used to filter out strange things like
__proto__. An expression such as this one can be used to reliably work
around this:
obj = foo: 'bar'

# This test is needed to avoid hidden properties ...
show Object::hasOwnProperty.call(obj, 'foo') and

Object::propertyIsEnumerable.call(obj, 'foo')
# ... because this returns true ...
show Object::hasOwnProperty.call(obj, '__proto__')
# ... this is required to get false.
show Object::hasOwnProperty.call(obj, '__proto__') and

Object::propertyIsEnumerable.call(obj, '__proto__')

Nice and simple, no? This is one of the not-so-well-designed aspects of
the system underlying CoffeeScript (recondite JavaScript). Objects play
both the role of ‘values with methods’, for which prototypes work great,
and ‘sets of properties’, for which prototypes only get in the way.

◦ • ◦
Writing the above kind of expression every time you need to check whether
a property is present in an object is unworkable. We could put it into a
function, but a better approach is to write a constructor and a prototype
specifically for situations like this, where we want to approach an object
as just a set of properties. Because you can use it to look things up by
name, we will call it a Dictionary.

148



Object Orientation

class Dictionary
constructor: (@values = {}) ->

store: (name, value) ->
@values[name] = value

lookup: (name) ->
@values[name]

contains: (name) ->
Object::hasOwnProperty.call(@values, name) and
Object::propertyIsEnumerable.call(@values, name)

each: (action) ->
for own property, value of @values

action property, value

colours = new Dictionary
Grover: 'blue'
Elmo: 'orange'
Bert: 'yellow'

show colours.contains 'Grover'
colours.each (name, colour) ->

show name + ' is ' + colour

Now the whole mess related to approaching objects as plain sets of prop-
erties has been ‘encapsulated’ in a convenient interface: one constructor
and four methods. Note that the values property of a Dictionary object
is not part of this interface, it is an internal detail, and when you are using
Dictionary objects you do not need to directly use it.
Whenever you write an interface, it is a good idea to add a comment with
a quick sketch of what it does and how it should be used. This way, when
someone, possibly yourself three months after you wrote it, wants to work
with the interface, they can quickly see how to use it, and do not have to
study the whole program.

149



Object Orientation

Using a piece of paper, a whiteboard or as here a pen and tablet can be
effective to sketch your designs. Using a notation roughly similar to UML
(Unified Modeling Language) can help in communicating your design to
others. Usually you do not need a tool21 — unless you really want to or
work in a large administrative setting. You can find a quick reference to
UML notation via web search. The most useful diagram is the interaction
or sequence diagram. Use it to specify how objects talk to each other —
especially in distributed systems. The class diagram shown above presents
a static view of the system so it is mostly for initial designs.
Most of the time, when you are designing an interface, you will soon find
some limitations and problems in whatever you came up with, and change
it. To prevent wasting your time, it is advisable to document your inter-
faces only after they have been used in a few real situations and proven
themselves to be practical. — Of course, this might make it tempting to
forget about documentation altogether. Personally, I treat writing docu-
mentation as a ‘finishing touch’ to add to a system. When it feels ready,
21A few integrated development environments automatically generate diagrams as you

are writing your code, for example Visual Studio Ultimate, but it is neither cheap nor
compatible with CoffeeScript.

150



Object Orientation

it is time to write something about it, and to see if it sounds as good in
English (or whatever language) as it does in CoffeeScript (or whatever
programming language).

◦ • ◦
The distinction between the external interface of an object and its internal
details is important for two reasons. Firstly, having a small, clearly de-
scribed interface makes an object easier to use. You only have to keep the
interface in mind, and do not have to worry about the rest unless you are
changing the object itself.
Secondly, it often turns out to be necessary or practical to change some-
thing about the internal implementation of a class, to make it more effi-
cient, for example, or to fix some problem. When outside code is accessing
every single property and detail in the object, you can not change any of
them without also updating a lot of other code. If outside code only uses a
small interface, you can do what you want, as long as you do not change
the interface.
Some people go very far in this. They will, for example, never include
properties in the interface of object, only methods — if their object type
has a length, it will be accessible with the getLength method, not the
length property. This way, if they ever want to change their object in
such a way that it no longer has a length property, for example because it
now has some internal array whose length it must return, they can update
the function without changing the interface.
My own take is that in most cases this is not worth it. Adding a getLength
method which only contains return this.length mostly just adds mean-
ingless code, and, in most situations, I consider meaningless code a bigger
problem than the risk of having to occasionally change the interface to my
objects.

◦ • ◦
Adding new methods to existing prototypes can be very convenient. Es-
pecially the Array and String prototypes in CoffeeScript could use a few
more basic methods. We could, for example, replace forEach and map
with methods on arrays, and make the startsWith function we wrote in
Data Structures a method on strings.
However, if your code has to run as a library used by others or as a program
on a web-page together with another program (either written by you or by

151



Object Orientation

someone else) which uses for/of naively — the way we have been using
it so far — then adding things to prototypes, especially the Object and
Array prototype, will definitely break something, because these loops will
suddenly start seeing those new properties. For this reason, some people
prefer not to touch these prototypes at all. Of course, if you are careful, and
you do not expect your code to have to coexist with badly-written code,
adding methods to standard prototypes is a perfectly good technique.

152



Regular Expressions

At various points in the previous chapters, we had to look for patterns
in string values. In Data Structures we extracted date values from strings by
writing out the precise positions at which the numbers that were part of the
date could be found. Later, in Functional Programming, we saw some particularly
ugly pieces of code for finding certain types of characters in a string, for
example the characters that had to be escaped in HTML output.
Regular expressions are a language for describing patterns in strings. They
form a small, separate language, which is embedded inside CoffeeScript
(and in various other programming languages, in one way or another). It
is not a very readable language — big regular expressions tend to be quite
unreadable. To make them more readable CoffeeScript has extended reg-
ular expressions where you can generously add comments to the different
parts. Examples of these are shown later. Still regular expressions are
difficult to read, but they are a useful tool that can really simplify string-
processing programs.

◦ • ◦
Just like strings get written between quotes, regular expression patterns get
written between slashes (/). This means that slashes inside the expression
have to be escaped.
slash = /\//;
show 'AC/DC'.search slash

The search method resembles indexOf, but it searches for a regular ex-
pression instead of a string. Patterns specified by regular expressions can
do a few things that strings can not do. For a start, they allow some of
their elements to match more than a single character. In Functional Program-
ming, when extracting mark-up from a document, we needed to find the
first asterisk or opening brace in a string. That could be done like this:
asteriskOrBrace = /[\{\*]/
story = 'We noticed the *giant sloth*, ' +

153



Regular Expressions

'hanging from a giant branch.';
show story.search asteriskOrBrace

The [ and ] characters have a special meaning inside a regular expres-
sion. They can enclose a set of characters, and they mean ‘any of these
characters’. Most non-alphanumeric characters have some special mean-
ing inside a regular expression, so it is a good idea to always escape them
with a backslash22 when you use them to refer to the actual characters.

◦ • ◦
There are a few shortcuts for sets of characters that are needed often. The
dot (.) can be used to mean ‘any character that is not a newline’, an es-
caped ‘d’ (\d) means ‘any digit’, an escaped ‘w’ (\w) matches any al-
phanumeric character (including underscores, for some reason), and an
escaped ‘s’ (\s) matches any white-space (tab, newline, space) character.
digitSurroundedBySpace = /\s\d\s/
show '1a 2 3d'.search digitSurroundedBySpace

The escaped ‘d’, ‘w’, and ‘s’ can be replaced by their capital letter to mean
their opposite. For example, \S matches any character that is not white-
space. When using [ and ], a pattern can be inverted by starting with a ^
character:
notABC = /[^ABC]/
show 'ABCBACCBBADABC'.search notABC

As you can see, the way regular expressions use characters to express
patterns makes them A) very short, and B) very hard to read.

Exercise 32
Write  a  regular  expression  that  matches  a  date  in  the  format
'XX/XX/XXXX', where the Xs are digits. Test  it  against  the string
'born 15/11/2003 (mother Spot): White Fang'.

Sometimes you need to make sure a pattern starts at the beginning of a
string, or ends at its end. For this, the special characters ^ and $ can be
used. The first matches the start of the string, the second the end.
22In this case, the backslashes were not really necessary, because the characters occur

between [ and ], but it is easier to just escape them anyway, so you will not have to
think about it.

154



Regular Expressions

show /a+/.test 'blah'
show /^a+$/.test 'blah'

The first regular expression matches any string that contains an a character,
the second only those strings that consist entirely of a characters.
Note that regular expressions are objects, and have methods. Their test
method returns a boolean indicating whether the given string matches the
expression.
The code \bmatches a ‘word boundary’, which can be punctuation, white-
space, or the start or end of the string.
show /cat/.test 'concatenate'
show /\bcat\b/.test 'concatenate'

◦ • ◦
Parts of a pattern can be allowed to be repeated a number of times. Putting
an asterisk (*) after an element allows it to be repeated any number of
times, including zero. A plus (+) does the same, but requires the pattern to
occur at least one time. A question mark (?) makes an element ‘optional’
— it can occur zero or one times.
parenthesizedText = /\(.*\)/
show "Its (the sloth's) claws were gigantic!"\
.search parenthesizedText

When necessary, braces can be used to be more precise about the amount
of times an element may occur. A number between braces ({4}) gives the
exact amount of times it must occur. Two numbers with a comma between
them ({3,10}) indicate that the pattern must occur at least as often as the
first number, and at most as often as the second one. Similarly, {2,}means
two or more occurrences, while {,4} means four or less.
To make big regular expressions more readable CoffeeScript has extended
regular expressions. They are delimited by /// and allow comments to be
added to the different parts. They ignore formatting, so they can be split
over several lines and placed in a column.
datePattern = /\d{1,2}\/\d\d?\/\d{4}/
show 'born 15/11/2003 (mother Spot): White Fang'\
.search datePattern

datePattern = ///

155



Regular Expressions

\d{1,2} # day
/ # separator
\d\d? # month
/ # separator
\d{4} # year

///
show 'born 15/11/2003 (mother Spot): White Fang'\
.search datePattern

The pieces /\d{1,2}/ and /\d\d?/ both express ‘one or two digits’.

Exercise 33
Write a pattern that matches e-mail addresses. For simplicity, assume
that the parts before and after the @ can contain only alphanumeric
characters and the characters . and - (dot and dash), while the last
part of the address, the country code or top level domain after the last
dot, may only contain alphanumeric characters, and must be two or
three characters long.

Part of a regular expression can be grouped together with parentheses.
This allows us to use * and such on more than one character. For example:
cartoonCrying = /boo(hoo+)+/i
show "Then, he exclaimed 'Boohoooohoohooo'"\
.search cartoonCrying

Where did the i at the end of that regular expression come from? After the
closing slash, ‘options’ may be added to a regular expression. An i, here,
means the expression is case-insensitive, which allows the lower-case B
in the pattern to match the upper-case one in the string.
A pipe character (|) is used to allow a pattern to make a choice between
two elements. For example:
holyCow = /(sacred|holy) (cow|bovine|bull|taurus)/i
show holyCow.test 'Sacred bovine!'

◦ • ◦
Often, looking for a pattern is just a first step in extracting something from
a string. In previous chapters, this extraction was done by calling a string’s

156



Regular Expressions

indexOf and slice methods a lot. Now that we are aware of the existence
of regular expressions, we can use the match method instead. When a
string is matched against a regular expression, the result will be null if
the match failed, or an array of matched strings if it succeeded.
show 'No'.match /Yes/
show '... yes'.match /yes/
show 'Giant Ape'.match /giant (\w+)/i

The first element in the returned array is always the part of the string that
matched the pattern. As the last example shows, when there are parenthe-
sized parts in the pattern, the parts they match are also added to the array.
Often, this makes extracting pieces of a string very easy.
quote = "My mind is a swirling miasma " +

"(a poisonous fog thought to " +
"cause illness) of titilating " +
"thoughts and turgid ideas."

parenthesized = quote.match ///
(\w+) # Word
\s* # Whitespace
\((.*)\) # Explanation

///
if parenthesized isnt null

show "Word: #{parenthesized[1]} " +
"Explanation: #{parenthesized[2]}"

Exercise 34
Re-write the function extractDate that we wrote in Data Structures. When
given a string, this function looks for something that follows the date
format we saw earlier. If it can find such a date, it puts the values into
a Date object. Otherwise, it throws an exception. Make it accept dates
in which the day or month are written with only one digit.

The replace method of string values, which we saw in Functional Programming,
can be given a regular expression as its first argument.
show 'Borobudur'.replace /[ou]/g, 'a'

157



Regular Expressions

Notice the g character after the regular expression. It stands for ‘global’,
and means that every part of the string that matches the pattern should be
replaced. When this g is omitted, only the first 'o' would be replaced.
Sometimes it is necessary to keep parts of the replaced strings. For exam-
ple, we have a big string containing the names of people, one name per
line, in the format “Lastname, Firstname”. We want to swap these names,
and remove the comma, to get a simple “Firstname Lastname” format.
names = '''Picasso, Pablo
Gauguin, Paul
Van Gogh, Vincent'''

show names.replace /([\w ]+), ([\w ]+)/g, '$2 $1'

show names.replace ///
([\w ]+) # Lastname
,
([\w ]+) # Firstname

///g, '$2 $1'

The $1 and $2 the replacement string refer to the parenthesized parts in
the pattern. $1 is replaced by the text that matched against the first pair of
parentheses, $2 by the second, and so on, up to $9.
If you have more than 9 parentheses parts in your pattern, this will no
longer work. But there is one more way to replace pieces of a string,
which can also be useful in some other tricky situations. When the second
argument given to the replace method is a function value instead of a
string, this function is called every time a match is found, and the matched
text is replaced by whatever the function returns. The arguments given to
the function are the matched elements, similar to the values found in the
arrays returned by match: The first one is the whole match, and after that
comes one argument for every parenthesized part of the pattern.
eatOne = (match, amount, unit) ->

amount = Number(amount) - 1
if amount == 1

unit = unit.slice 0, unit.length - 1
else if amount == 0

unit = unit + 's'
amount = 'no'

amount + ' ' + unit

158



Regular Expressions

stock = '1 lemon, 2 cabbages, and 101 eggs'
stock = stock.replace /(\d+) (\w+)/g, eatOne
show stock

Exercise 35
That last trick can be used to make the HTML-escaper from Functional
Programming more efficient. You may remember that it looked like this:
escapeHTML = (text) ->

replacements = [[/&/g, '&amp;']
[/"/g, '&quot;']
[/</g, '&lt;']
[/>/g, '&gt;']]

forEach replacements, (replace) ->
text = text.replace replace[0], replace[1]

text
show escapeHTML '< " & " >'

Write a new function escapeHTML, which does the same thing, but only
calls replace once.

There are cases where the pattern you need to match against is not known
while you are writing the code. Say we are writing a (very simple-minded)
obscenity filter for a message board. We only want to allow messages that
do not contain obscene words. The administrator of the board can specify
a list of words that he or she considers unacceptable.
The most efficient way to check a piece of text for a set of words is to use
a regular expression. If we have our word list as an array, we can build
the regular expression like this:
badWords = ['ape', 'monkey', 'simian',

'gorilla', 'evolution']
pattern = new RegExp badWords.join('|'), 'i'
isAcceptable = (text) ->

!pattern.test text

show isAcceptable 'Mmmm, grapes.'
show isAcceptable 'No more of that monkeybusiness, now.'

159



Regular Expressions

We could add \b patterns around the words, so that the thing about grapes
would not be classified as unacceptable. That would also make the second
one acceptable, though, which is probably not correct. Obscenity filters
are hard to get right (and usually way too annoying to be a good idea).
The first argument to the RegExp constructor is a string containing the pat-
tern, the second argument can be used to add case-insensitivity or global-
ness. When building a string to hold the pattern, you have to be careful
with backslashes. Because, normally, backslashes are removed when a
string is interpreted, any backslashes that must end up in the regular ex-
pression itself have to be escaped:
digits = new RegExp '\\d+'
show digits.test '101'

◦ • ◦
The most important thing to know about regular expressions is that they
exist, and can greatly enhance the power of your string-mangling code.
They are so cryptic that you will probably have to look up the details on
them the first ten times you want to make use of them. Persevere, and
you will soon be off-handedly writing expressions that look like occult
gibberish.
When your tasks become too complex for regular expressions then have a
look at how CoffeeScript is implemented. It uses Jison, a parser generator.
With it you define a grammar for the language you want your program to
be able to read i.e. parse. Jison then generates a module that can read data
in that format. You integrate the module in your program and can then
perform appropriate actions when different parts of the data is read. It is
an advanced tool, that begins where regular expressions leave off.

160

http://github.com/zaach/jison


Modularity

This chapter deals with the process of organising programs. In small pro-
grams, organisation rarely becomes a problem. As a program grows, how-
ever, it can reach a size where its structure and interpretation become hard
to keep track of. Easily enough, such a program starts to look like a bowl
of spaghetti, an amorphous mass in which everything seems to be con-
nected to everything else.
In top down design you look at the overall structure of your application and
divide it into smaller parts. There are many ways to do this, one way is to
distinguish between technical and application specific areas. For example
instead of inserting statements that write application activity in files in
various places, the technical part — writing in a file, checking for errors
and handling daily log roll-overs — can be placed in a logging utility as a
technical service.
A useful technique is to use a layered approach, where lower layers do
not know of higher layers. For example when communicating between
processes, lower level protocols can be encapsulated in a layer and when
data arrives — instead of a lower layer directly calling a function to han-
dle the data in a higher layer — the lower layer raises an event23 that an
interested higher layer can be listening to. It is analogue to what we saw in
Error Handling where a failing function does not have any knowledge of who
or how an exception will be handled.
When structuring a program in CoffeeScript, we do two things. We sepa-
rate it into smaller parts, called modules, each of which has a specific role,
and we specify the relations between these parts.
In Searching, while finding routes, we made use of a number of functions
described in Functional Programming. The chapter also defined some concepts
that had nothing in particular to do with route planning, such as flatten,
partial and the BinaryHeap type. BinaryHeap was treated as a black
23The system underlying standard CoffeeScript has an EventEmitter to help you do this.

Search for event in the documentation for the runtime system you use to learn more.

161



Modularity

box, we only had to know how to use it, we did not have to know how it
internally works. That kind of encapsulation is the essence of modularity
and of Object Orientation.
The flatten function was reused from the Underscore library. We needed
the partial function in a few places and haphazardly just added it to the
environment where we needed it. It would have been easy to simply add
partial to the Underscore library, but that would mean that we had to add
it every time a new version of Underscore is released.
We could create our own module instead and place the missing parts there,
then we would have to refer to two libraries whenever we are using fun-
damental functions. Or we could create a module with our functions that
include Underscore and use the functions from it to build our own. Our
module would then depend on Underscore. When a module depends on
another module, it uses functions or variables from that module, and will
only work when the module is loaded.
It is a good idea to make sure dependencies never form a circle. Not only
do circular dependencies create a practical problem (if module A and B
depend on each other, which one should be loaded first?), it also makes
the relation between the modules less straightforward, and can result in a
modularised version of the spaghetti I mentioned earlier.

◦ • ◦
Most modern programming languages have some kind of module system
built in. In CoffeeScript it sort of depends… In the standard CoffeeScript
environment we have a module system based on CommonJS require.
When using CoffeeScript in other environments, such as on a page in a
web browser, then we do not have require and must rely on system spe-
cific services or once again invent something ourselves24.
The most obvious way to start is to put every module in a different file.
This makes it clear which code belongs to which module. In this chapter
we will return to the Seed of Life example you saw in the Foreword and
make a server controlled, animated version of it. For this purpose I have
extracted the mathematical calculations behind the drawing and placed
them in a file, '10-MathFix.coffee'. It contains a CircularPosition
class we can use to get positions about a 1/6 apart on a unit circle and a fix
for a floating point rounding error. It also uses the prelude and has a small
24Projects such as browserify is aiming at bringing require to the browser.

162

http://substack.net/posts/24ab8c/browserify-browser-side-require-for-your-node-js


Modularity

print utility at the end. It is not a module yet, we will stepwise refine it so
it can be used in both a server and a browser environment.
require "./prelude"

Pi2 = Math.PI*2
# Create an array with angles on the unit circle.
angles = (angle for angle in [0...Pi2] by 1/3*Math.PI)
# Remove the last element if 2*PI were included
# due to floating point rounding on additions.
epsilon = 1e-14
lastAngle = angles[angles.length - 1]
# Use an interval to test floating point value
if Pi2 - epsilon < lastAngle < Pi2 + epsilon

angles.length = angles.length - 1

# Encapsulation of a pair of (x, y) coordinates
class Point

constructor: (@x, @y) ->
toString: -> "{x:#{@x.toPrecision 4}," +

" y:#{@y.toPrecision 4}}"

# Math class that returns points on the unit
# circle, offset by step if given non-zero.
class CircularPosition

constructor: (@_step = 0) -> @_count = 0
nextPoint: ->

index = @_count % angles.length
angle = angles[index] + @_step * @_count++
new Point Math.cos(angle), Math.sin(angle)

circ = new CircularPosition 0.01
for i in [0...6]

show "#{i}: #{circ.nextPoint()}"

The first thing is to remove the print utility at the end25. The next is the
require './prelude', while the prelude has served us well in the course
of this book, it is not intended for modules. The prelude includes a vari-
ety of definitions so we have been free to focus on each aspect of Coffee-
Script without distraction. However it pulls these definitions into a shared
25How to use a separate test module is shown in Binary Heaps.

163



Modularity

namespace either directly or via the globalize function. This namespace
is shared between all modules that a program consists of and since the
purpose of a module is for us to be able to reuse it in various projects, a
module should not ‘pollute’ this scarce, shared resource. In other words,
you can use the prelude, when you are experimenting with a new algo-
rithm, but do not use it when you create a reusable module.

◦ • ◦
When much code is loaded into an environment, it will use many top-level
variable names. Once there is more code than you can really keep track of,
it becomes very easy to accidentally use a name that was already used for
something else. This will break the code that used the original value. The
proliferation of top-level variables is called name-space pollution, and it
has been a rather severe problem in JavaScript — the language will not
warn you when you redefine an existing variable.
CoffeeScript greatly reduces this problem by automatically encapsulating
modules. You only have to avoid directly using top-level variables. In
particular modules should not use top-level variables for values that are
not part of their external interface.

◦ • ◦
In CoffeeScript, ‘top-level’ variables all live together in a single place. In
browsers, this place is an object that can be found under the name window.
The name is somewhat odd, environment or top would have made more
sense, but since browsers associate an environment with a window or a
‘frame’, someone decided that window was a logical name. In the standard
CoffeeScript environment it is called global.
show global.process.argv[0]
show global.console.log == console.log
show global.global.global.global.global.console

As the third line shows, the name global is merely a property of this
environment object, pointing at itself.

◦ • ◦
Not being able to define any internal functions and variables at all in your
modules is, of course, not very practical. Fortunately, there is a trick to get
around this. We could write all the code for the module inside a function,
and then add the variables that are part of the module’s interface to the

164



Modularity

top-level object. Because they were created in the same parent function,
all the functions of the module can see each other, but code outside of
the module can not. The wrapping in a function is done by CoffeeScript
automatically. In the server environment, instead of assigning directly to
the top-level environment our module will export its definitions. In the
browser we have to assign to the top-level window, which when a module
is loaded by a browser is the same as this. All we have to do is append
this one line to our math module:
(exports ? this).CircularPosition = CircularPosition

If exports is defined then CircularPosition is added to it otherwise it is
added to the top-level environment object. This change has been done in
'10-Circular.coffee' and the module is now usable from another mod-
ule. The other definitions such as the Point class are not visible to other
modules. Objects of Point type are of course visible as they are returned
by nextPoint. You can use this modular information hiding when creat-
ing classes, if you want some definitions to be more private than simply
naming them with an '_' in front. We can verify this in an ad-hoc test,
this one is called '10-CircularTest.coffee':
cp = require "./10-Circular"
show = console.log

circ = new cp.CircularPosition 0.01
for i in [0...6]

show "#{i}: #{circ.nextPoint()}"

try
show "Instantiating a new Point:"
p = new cp.Point 0, 0
show "Created a Point"

catch e then show e.message

show "CircularPosition namespace:"
show cp

The show function was defined in the prelude, so we no longer have access
to it. In the underlying environment there is a function console.log that
can be used for output. Instead of using console.log directly, defining
show as an alias for it makes it easy to copy such code into another envi-
ronment, the browser were console.log does not exist. When we have

165



Modularity

many show calls, we only have to change in one place to redirect them to
alert or debug output.
The process that we have been through — identifying a rounding error,
extracting the implementation into a separate module where it is fixed —
is called refactoring and it is an essential part of developing applications.
Looking through code and finding places where it can be improved in
functionality or in clarity results in a better overall system.

◦ • ◦
Designing an interface for a module or an object type is one of the subtler
aspects of programming. On the one hand, you do not want to expose
too many details. They will only get in the way when using the module.
On the other hand, you do not want to be too simple and general, because
that might make it impossible to use the module in complex or specialised
situations.
Sometimes the solution is to provide two interfaces, a detailed ‘low-level’
one for complicated things, and a simple ‘high-level’ one for straightfor-
ward situations. The second one can usually be built very easily using the
tools provided by the first one.
In other cases, you just have to find the right idea around which to base
your interface. The best way to learn the value of good interface design
is, unfortunately, to use bad interfaces. Once you get fed up with them,
you will figure out a way to improve them, and learn a lot in the process.
Try not to assume that a lousy interface is ‘just the way it is’. Fix it, or
wrap it in a new interface that is better.

◦ • ◦
Just like an object type, a module has an interface. In collection-of-func-
tions modules such as Underscore, the interface usually consists of all the
functions that are defined in the module. In other cases, the interface of
the module is only a small part of the functions defined inside it.
For example, our manuscript-to-HTML system from Functional Programming only
needs an interface of a single function, renderFile. The sub-system for
building HTML would be a separate module. For modules which only de-
fine a single type of object, such as Dictionary, the object’s interface is
the same as the module’s interface.

◦ • ◦

166



Modularity

There are cases where a module will export so many variables that it is a
bad idea to put them all into the top-level environment. In cases like this,
you can do what the standard Math object does, and represent the module
as a single object whose properties are the functions and values it exports.
For example…
HTML =

tag: (name, content, properties) ->
name: name
properties: properties
content: content

link: (target, text) ->
HTML.tag 'a', [text], {href: target}

# ... many more HTML-producing functions ...

When you need the content of such a module so often that it becomes
cumbersome to constantly type HTML, you can always move it into the
top-level environment using globalize.
# As defined in the prelude
globalize = (ns, target = global) ->

target[name] = ns[name] for name of ns

globalize HTML
show link 'http://citeseerx.ist.psu.edu/viewdoc/' +

'download?doi=10.1.1.102.244&rep=rep1&type=pdf',
'What Every Computer Scientist Should Know ' +
'About Floating-Point Arithmetic'

You can even combine the function and object approaches, by putting the
internal variables of the module inside a function, and having this function
return an object containing its external interface.

◦ • ◦
When adding methods to standard prototypes, such as those of Array and
Object a similar problem to name-space pollution occurs. If two modules
decide to add a map method to Array.prototype, you might have a prob-
lem. If these two versions of map have the precise same effect, things will
continue to work, but only by sheer luck.

◦ • ◦

167



Modularity

There are functions which require a lot of arguments. Sometimes this
means they are just badly designed, and can easily be remedied by split-
ting them into a few more modest functions. But in other cases, there is
no way around it. Typically, some of these arguments have a sensible ‘de-
fault’ value. We could, for example, write yet another extended version
of range.
range = (start, end, stepSize, length) ->

if stepSize == undefined
stepSize = 1

if end == undefined
end = start + stepSize * (length - 1)

result = []
while start <= end

result.push start
start += stepSize

result
show range 0, undefined, 4, 5

It can get hard to remember which argument goes where, not to mention
the annoyance of having to pass undefined as a second argument when
a length argument is used. We can make passing arguments to this un-
friendly function more comprehensive by wrapping them in an object.
defaultTo = (object, values) ->

for name, value of values
if not object.hasOwnProperty name

object[name] = value

range = (args) ->
defaultTo args, {start: 0, stepSize: 1}
if args.end == undefined

args.end = args.start +
args.stepSize * (args.length - 1)

result = [];
while args.start <= args.end

result.push args.start
args.start += args.stepSize

result
show range {stepSize: 4, length: 5}

The defaultTo function is useful for adding default values to an object. It

168



Modularity

copies the properties of its second argument into its first argument, skip-
ping those that already have a value.

◦ • ◦
For the Seed of Life from the Foreword, to use the '10-Circular.coffee'
module in the web application, we have a few things to do. First we can
replace the first line with kup = require './prelude/coffeekup'. The
source code assigned to webpage has a similar structure as the HTML we
saw in Functional Programming, but instead of being object attributes or text, it
is CoffeeScript function calls.
It is like we have HTML embedded as a language extension in Coffee-
Script. The correspondence between HTML and Coffeekup is practically
1:1, so when you know which HTML tag you want to use it is straight-
forward to write it in Coffeekup. You can find more information on the
CoffeeKup website or even better take the time to read the source code,
it is only a few hundred lines of CoffeeScript and quite readable. There
are examples in its standard distribution and A Beginner’s Introduction to
CoffeeKup by Mark Hahn.
In HTML5 there is a canvas tag with which you can create a drawing area.
Then you can draw with vector graphics commands on the area. The com-
mands are documented by W3C in HTML Canvas 2D Context. If you
are already familiar with vector graphics then the HTML5 Canvas Cheat
Sheet may be all you need to create your own drawings. When you choose
the technologies that you base your application on, then look for vendor
independent, standardized technologies first. They tend to have a long
lifespan, so you learn something you can bring with you from task to task.
An alternative to the W3C canvas is Adobe Flash.
Browsers load JavaScript files when they find a <script> tag with an src
attribute in the HTML of a web page. The extension .js is usually used for
files containing JavaScript code. We could let the coffee command line
compiler produce JavaScript files for us. But then we have two files for
every module and someone is bound to forget to compile a file someday,
which could lead to strange behaviour and some difficult to find bugs. So
instead let’s keep our CoffeeScript files and have the server compile them
on the fly. That means we let the web page request a CoffeeScript file, but
we will send the browser the corresponding JavaScript.
script src: './10-Circular.coffee'

169

http://coffeekup.org/
https://github.com/mark-hahn/coffeekup-intro/raw/master/coffeekup-intro-pandoc/coffeekup-intro.pdf
https://github.com/mark-hahn/coffeekup-intro/raw/master/coffeekup-intro-pandoc/coffeekup-intro.pdf
http://www.w3.org/TR/2dcontext/
http://www.nihilogic.dk/labs/canvas_sheet/HTML5_Canvas_Cheat_Sheet.pdf
http://www.nihilogic.dk/labs/canvas_sheet/HTML5_Canvas_Cheat_Sheet.pdf


Modularity

Adding a type: 'text/coffeescript' attribute would tell the client to
expect and compile CoffeeScript code (if the CoffeeScript compiler was
loaded in the client). While that may sound like a good idea, it has some
problems. The biggest one is that the code is only available after the code
under the coffeescript function has run. And that function is were we
want to use the class from the imported module. So forget about that
possibility and compile on the server instead.
circ = new CircularPosition()
for i in [0...6]

pt = circ.nextPoint()
circle ctx, x+100*pt.x, y+100*pt.y

Replacing the loop that used π and trigonometric functions with the one
above is the last step for the client side. It is only a few visible changes
but we got rid of the rounding error, that fix would have bloated the client
with irrelevant details. Here is the client from '10-SeedLife.coffee':
kup = require './prelude/coffeekup'

# Client-side web page with canvas
webpage = kup.render ->

doctype 5
html ->

head ->
meta charset: 'utf-8'
title 'My drawing | My awesome website'
style '''

body {font-family: sans-serif}
header, nav, section, footer {display: block}

'''
# DO NOT USE: type: 'text/coffeescript'
script src: './10-Circular.coffee'

coffeescript ->
draw = (ctx, x, y) ->

circle = (ctx, x, y) ->
ctx.beginPath()
ctx.arc x, y, 100, 0, 2*Math.PI, false
ctx.stroke()

ctx.strokeStyle = 'rgba(255,40,20,0.7)'
circle ctx, x, y

170



Modularity

circ = new CircularPosition()
for i in [0...6]

pt = circ.nextPoint()
circle ctx, x+100*pt.x, y+100*pt.y

window.onload = ->
canvas = document.getElementById 'drawCanvas'
context = canvas.getContext '2d'
draw context, 300, 200

body ->
header -> h1 'Seed of Life'
canvas id: 'drawCanvas', width: 600, height: 400

◦ • ◦
It is possible not use a script tag, but to fetch the content of a file directly,
and then use the eval function to execute it. This makes script loading
instantaneous, and thus easier to deal with. eval, short for ‘evaluate’, is
an interesting function. You give it a string value, and it will execute the
content of the string as code. The global function will however only accept
JavaScript, to get a usable CoffeeScript eval function you need to refer to
the 'coffee-script' library.
eval 'function IamJavaScript() {' +

' console.log(\"Repeat after me:' +
' Give me more {();};.\");};' +
' IamJavaScript();'

cs = (require 'coffee-script').CoffeeScript
cs.eval 'show ((a, b) -> a + b) 3, 4'

You can imagine that eval can be used to do some interesting things. Code
can build new code, and run it. In most cases, however, problems that
can be solved with creative uses of eval can also be solved with creative
uses of anonymous functions, and the latter is less likely to cause strange
problems and security nightmares. When eval is called inside a function,
all new variables will become local to that function.
Notice the require statement — we are not interested in creating instances
of the CoffeeScript class, only in calling its static eval method — so that
line helps us avoid writing: cs.CoffeeScript.eval …

◦ • ◦

171



Modularity

A web server functions by responding to web browser (client) requests.
The minimal implementation given in Seed of Life create a server that
takes a function as an argument. Every time a request comes in, the func-
tion is called. Such a function is called an event handler or sometimes a
callback. This function prints a message and creates a response by writ-
ing a header, describing the content of the response, and adding the web
page as the response body. The server is started by giving it a port number
to listen to. The server then goes to sleep, waiting for a client to request
something of it. You can do that by typing http://localhost:3389/ in
your web browser26. To stop the server press CTRL-C. It’s similar to this:
# Server-side HTTP server
http = require "http"
server = http.createServer (req, res) ->

show "#{req.client.remoteAddress} " +
"#{req.method} #{req.url}"

res.writeHead 200, "Content-Type": "text/html"
res.write webpage
res.end()

server.listen 3389
show "Server running at"
show server.address()

That is a bit too minimal for our Seed of Life application because we have
to send either the web page or our module depending on what the client
will be asking for. We could replace our code with a web server framework
but that is not very instructive, it only shows you that something can be
done, not how it works internally.
Instead lets expand the server with the minimum of what is required to get
it to work. You can reverse engineer the client / server communication
by adding a show req to the minimal server. Using the new web page we
can see that three items are requested by the client: '/' the web page,
'/10-Circular.coffee' the code module, and '/favicon.ico' that we
can ignore. That is enough information to add some if statements to it.
For the module request we have to read the file, compile it with Coffee-
Script (using the same module as eval) and return the compiled code, that

26Depending  on  your  operating  system  you  can  also  use  numerical  IP addresses.
127.0.0.1 conventionally address your local machine. In a hosts file you can
map names into IP addresses, its location depend on your operating system.

172



Modularity

the browser can understand, in the response. When a request is made for
anything else then a simple response is ‘not found’, that’s a 404 in HTTP.
If you looked in the prelude how it was reading a file, then that is not the
way to read a file in a server. The prelude uses a synchronous function, that
means that everything stops until the file has been read. In the world of
servers hard disks are slow, and one request should not stop other requests.
Using readFile solves this because its last argument is for a function that
will only be run when the file has been read — the server can then process
other requests in the meantime.
# Server-side HTTP server
show = console.log
http = require "http"
fs = require "fs"
cs = require("coffee-script").CoffeeScript

server = http.createServer (req, res) ->
show "#{req.client.remoteAddress} " +

"#{req.method} #{req.url}"
if req.method is "GET"

if req.url is "/"
res.writeHead 200, "Content-Type": "text/html"
res.write webpage
res.end()
return

else if req.url is "/10-Circular.coffee"
fs.readFile ".#{req.url}", "utf8", (err, data) ->

if err then throw err
compiledContent = cs.compile data
res.writeHead 200,

"Content-Type": "application/javascript"
res.write compiledContent
res.end()

return
res.writeHead 404, "Content-Type": "text/html"
res.write "404 Not found"
res.end()

server.listen 3389
show "Server running at"
show server.address()

173



Modularity

I think you can see that this code practically begs to be abstracted and
modularized. Instead of an if chain, we could have a function with an
object as argument where each attribute is a request and each value a
function to handle the request. Then there is error handling, if the file
is not found then the server throws an error and stops. The purpose of
'10-SeedLife.coffee' is to show how you can use a module on a web
page, so refactoring and beautifying the server is up to you27.
Building a program as a set of nice, small modules often means the pro-
gram will use a lot of different files. When programming for the web,
having lots of small code files on a page tend to make the page slower to
load. This does not have to be a problem though. You can write and test
your program as a number of small files, and put them all into a single big
file when ‘publishing’ the program to the web. The CoffeeScript compiler
has a join feature for this.

◦ • ◦
A module or group of modules that can be useful in more than one program
is usually called a library. For many programming languages, there is a
huge set of quality libraries available. This means programmers do not
have to start from scratch all the time, which can make them a lot more
productive.
For CoffeeScript, unfortunately, the number of available libraries is not
very large. But you can use JavaScript libraries as a stopgap. Underscore
is an example of a good library with its ‘basic’ tools, things like map and
clone. Other languages tend to provide such obviously useful things as
built-in standard features, but with CoffeeScript you will have to either
build a collection of them for yourself or use a library.
Using a library is recommended: It is less work, and the code in a library
has usually been tested more thoroughly than the things you write yourself.
Some things to check when selecting a library is functionality, adequate
documentation, and readable source code — and that the library is small
enough that you can understand and fix bugs in it — if need be on your
own.

◦ • ◦

27If you want to understand how to write your own HTTP server then Manuel Kiessling
has a tutorial that you can easily translate into your own CoffeeScript web server.

174

http://www.nodebeginner.org/


Modularity

Beyond the concept of modules and programs is the world of distributed
programming where processes running on different machines collaborate
on solving a task or interact with each other in near real time. One protocol
that enables distributed programming is WebSockets.
A WebSocket is a bi-directional, full-duplex communications channel over
a TCP socket. Possibly the same socket that a web server is using. With
bi-directional, full-duplex support a server and its clients can send mes-
sages back and forth concurrently. It opens the door to many kinds of web
applications that would have been difficult to implement over http.
Most of the latest web browsers have support for WebSockets. Some have
it disabled by default because of potential security issues in the draft pro-
tocol, the prelude shows how to enable WebSocket support in Firefox and
Opera. It is enabled in Chrome and Safari. To see if your web browser
works with WebSockets you can run '10-TestWebSocket.coffee'.

◦ • ◦
To connect a client to a WebSocket server, you create a WebSocket object
with a server as its endpoint. Note the ws protocol instead of http:
websocket = new WebSocket 'ws://localhost:8080/'

You can attach functions to a WebSocket object, so your code can react
when certain events occur. There are four of them: onopen, onclose,
onmessage, and onerror. Sending a message to the server is done with
send. For example:
websocket.onopen = (evt) ->

writeToScreen 'CONNECTED'
websocket.send 'WebSocket works!'

That is how simple it is with a client on a web page. In CoffeeScript’s
server-side environment there is not yet support for WebSockets, but that
is easily fixed with the ws library from Jacek Becela. It is less than 200
lines when translated into CoffeeScript. It is present in the prelude or you
can use it directly from prelude/ws.coffee.
To create a server you pass a function to its createServer method and
get a websocket object as an argument where you can attach methods to
listen for events. To send a message to a client, call its write method with
a string. Here is an abbreviated use of it:

175

http://dev.w3.org/html5/websockets/


Modularity

wsHandler = (websocket) ->
websocket.on 'connect', (resource) ->

show 'connect: ' + resource
# ...

websocket.on 'data', (data) ->
show data # process data
websocket.write 'Cowabunga!' # respond

# ...

wsServer = ws.createServer wsHandler
wsServer.listen 8080

◦ • ◦
So without further ado here follows an animated version of Seed of Life…
Find it in '10-WebSocketLife.coffee' and change it any way you like.
kup = require './prelude/coffeekup'

# Web page with canvas and client-side WebSocket
webpage = kup.render ->

doctype 5
html ->

head ->
meta charset: 'utf-8'
title 'My animation | My awesome website'
style '''

body {font-family: sans-serif}
header, nav, section, footer {display: block}

'''
coffeescript ->

show = (msg) -> console.log msg
color = 'rgba(255,40,20,0.7)'
circle = (ctx, x, y) ->

ctx.strokeStyle = color
ctx.beginPath()
ctx.arc x, y, 100, 0, 2*Math.PI, false
ctx.stroke()

addElement = (ni, num, text) ->
newdiv = document.createElement 'div'
newdiv.setAttribute 'id', 'div' + num
newdiv.innerHTML = text
ni.appendChild newdiv

176



Modularity

wsUri = 'ws://localhost:8080/'
websocket = undefined
num = 0
socketClient = (buffer, ctx, x, y) ->

websocket = new WebSocket wsUri
websocket.onopen = (evt) ->

show 'Connected'
websocket.onclose = (evt) ->

show 'Closed'
websocket.onerror = (evt) ->

show 'Error: ' + evt.data
websocket.onmessage = (evt) ->

#show evt.data
addElement buffer, num++, evt.data
pt = JSON.parse evt.data
if pt.color? then color = pt.color
circle ctx, x+100*pt.x, y+100*pt.y

window.onload = ->
canvas = document.getElementById 'drawCanvas'
context = canvas.getContext '2d'
buffer = document.getElementById 'message'
socketClient buffer, context, 300, 200

window.sendMessage = ->
msg = document.getElementById('entryfield').value
websocket.send msg

body ->
header -> h1 'Seed of Life'
input id:'entryfield', value:'rgba(40,200,25,0.7)'
button type: 'button', onclick: 'sendMessage()'

'Change Color'
br
canvas id: 'drawCanvas', width: 600, height: 400
div id: 'message'

# Server-side WebSocket server
ws = require './prelude/ws'
cp = require './10-Circular'
wsHandler = (websocket) ->

websocket.on 'connect', (resource) ->
show 'connect: ' + resource
# close connection after 10s
setTimeout websocket.end, 10 * 1000

177



Modularity

websocket.on 'data', (data) ->
show data # process data
blue = 'rgba(40,20,255,0.7)'
websocket.write JSON.stringify

color: if data is '' then blue else data

websocket.on 'close', ->
show 'closing'
process.exit 0 # Exit server completely

circ = new cp.CircularPosition 0.01
annoy = setInterval (->

websocket.write JSON.stringify circ.nextPoint()), 20

wsServer = ws.createServer wsHandler
wsServer.listen 8080

# Launch test server and client UI
require './prelude'
viewServer webpage

◦ • ◦
Through the examples, exercises and explanations you have a foundation
for your own projects: a collaborative web application, a multi-user game,
a library with an aesthetically pleasing implementation, …
First choose what your project is going to be about, then look to github
for supporting code and libraries. A couple of interesting ones for web
applications are Zappa and SocketStream.
If you would like a broader foundation in computer science then read:
Concepts, Techniques, and Models of Computer Programming by Peter
van Roy and Seif Haridi. Not a word of CoffeeScript, but plenty of insight.

Dimidium facti qui coepit habet: sapere aude, incipe
He who has begun has half done. Dare to be wise; begin!

Quintus Horatius Flaccus

178

https://github.com/languages/CoffeeScript
https://github.com/mauricemach/zappa
https://github.com/socketstream/socketstream
http://cisnet.mit.edu/4i7o9/5cjhf/toc


Appendix

179



Language extras

Most of the CoffeeScript language has been introduced in Smooth CoffeeScript.
This appendix illustrates some extra language constructs and idioms that
may come in handy.

◦ • ◦
There is a statement called switch which can be used to choose which
code to execute based on some value. Alternatives include a chain of if
statements or an associative data structure.
weatherAdvice = (weather) ->

show 'When it is ' + weather
switch weather

when 'sunny'
show 'Dress lightly.'
show 'Go outside.'

when 'cloudy'
show 'Go outside.'

when 'tornado', 'hurricane'
show 'Seek shelter'

else
show 'Unknown weather type: ' + weather

weatherAdvice 'sunny'
weatherAdvice 'cloudy'
weatherAdvice 'tornado'
weatherAdvice 'hailstorm'

Inside the block opened by switch, you can write a number of when la-
bels. The program will jump to the label that corresponds to the value
that switch was given or to else if no matching value is found. Then it
executes statements in the following block until it reaches the next when
or else statement. Unlike some other languages there is no fall-through
between when cases and no break statement is therefore needed. You can
have a comma-separated lists after a when, any of the values is then used
to find a match.

180



Language Extras

◦ • ◦
Closely related to break, there is continue. They can be used in the same
places. While break jumps out of a loop and causes the program to pro-
ceed after the loop, continue jumps to the next iteration of the loop.
for i in [20...30]

if i % 3 != 0
continue

show i + ' is divisible by three.'

A similar effect can usually be produced using just if, but there are cases
where continue looks nicer.

◦ • ◦
Pattern matching has been touched upon, a few more examples can clarify
the scope of it. You can assign an object to an anonymous object with
matching attribute names.
class Point

constructor: (@x, @y) ->
pt = new Point 3, 4

{x, y} = pt
show "x is #{x} and y is #{y}"

Attribute names can be inferred from an anonymous object.
firstName = "Alan"
lastName = "Turing"

name = {firstName, lastName}
show name

A function can have an anonymous object as argument and extract the
attributes as variables.
decorate = ({firstName, lastName}) ->

show "Distinguished #{firstName} " +
"of the #{lastName} family."

decorate name

◦ • ◦

181



Language Extras

Unicode can be used in identifiers. Letter forms that are very similar to
characters in the western alphabets should be avoided. It can be difficult
in internationally shared projects due to different keyboard layouts, but
useful in teaching math or in a local language.
pi = π = Math.PI
sphereSurfaceArea = (r) -> 4 * π * r * r
radius = 1
show '4 * π * r * r when r = ' + radius
show sphereSurfaceArea radius

◦ • ◦
Qualifying a for statement with a when clause can be used to filter array
or object elements on a logical condition. Great for one-liners.
evens = (n) -> i for i in [0..n] when i % 2 is 0
show evens 6

steppenwolf =
title: 'Tonight at the Magic Theater'
warning: 'For Madmen only'
caveat: 'Price of Admittance: Your Mind.'
caution: 'Not for Everybody.'

stipulations = (text for key, text of steppenwolf \
when key in ['warning', 'caveat'])

show stipulations
show ultimatum for ultimatum in stipulations \

when ultimatum.match /Price/

◦ • ◦
Destructuring assignment can be used to swap or reassign variables. It
is also handy for extracting values or returning multiple values from a
function.
tautounlogical = "the reason is because I say so"
splitStringAt = (str, n) ->

[str.substring(0,n), str.substring(n)]
[pre, post] = splitStringAt tautounlogical, 14
[pre, post] = [post, pre] # swap
show "#{pre} #{post}"

182



Language Extras

[re,mi,fa,sol,la,ti] = [1..6]
[dal,ra...,mim] = [ti,re,fa,sol,la,mi]
show "#{dal}, #{ra} and #{mim}"

[key, word] = if re > ti then [mi, fa] else [fa, mi]
show "#{key} and #{word}"

◦ • ◦
A function can be bound to the this value that is in effect when it is de-
fined. This can be needed when you are using event handlers or callback
based libraries e.g. jQuery. Instead of -> use => to bind this.
In the following example the a.display would show undefined when
called in the Container if display was defined with ->.
class Widget

id: 'I am a widget'
display: => show @id

class Container
id: 'I am a container'
callback: (f) ->

show @id
f()

a = new Widget
a.display()
b = new Container
b.callback a.display

◦ • ◦
With the do statement you can call a named or an anonymous function:
n = 3
f = -> show "Say: 'Yes!'"
do f
(do -> show "Yes!") while n-- > 0

Which is reminiscent of the syntax for a function that takes a function as
its parameter.
echoEchoEcho = (msg) -> msg() + msg() + msg()
show echoEchoEcho -> "No"

183



Language Extras

The do statement captures the environment, so it is available inside its
block. The setTimeout function calls the innermost function after the
loop has finished. Without capture the i variable is 4.
for i in [1..3]

do (i) ->
setTimeout (-> show 'With do: ' + i), 0

for i in [1..3]
setTimeout (-> show 'Without: ' + i), 0

184



Binary Heaps

In Searching, the binary heap was introduced as a method to store a collection
of objects in such a way that the smallest element can be quickly found. As
promised, this appendix will explain the details behind this data structure.
Consider again the problem we needed to solve. The A* algorithm created
large amounts of small objects, and had to keep these in an ‘open list’. It
was also constantly removing the smallest element from this list. The
simplest approach would be to just keep all the objects in an array, and
search for the smallest one when we need it. But, unless we have a lot of
time, this will not do. Finding the smallest element in an unsorted array
requires going over the whole array, and checking each element.
The next solution would be, of course, to sort our array. CoffeeScript
arrays have a wonderful sort method, which can be used to do the heavy
work. Unfortunately, re-sorting a whole array every time an element is
removed is more work than searching for a minimum value in an unsorted
array. Some tricks can be used, such as, instead of re-sorting the whole
array, just making sure new values are inserted in the right place so that the
array, which was sorted before, stays sorted. This is coming closer to the
approach a binary heap uses already, but inserting a value in the middle
of an array requires moving all the elements after it one place up, which
is still just too slow.
Another approach is to not use an array at all, but to store the values in
a set of interconnected objects. A simple form of this is to have every
object hold one value and two (or less) links to other objects. There is
one root object, holding the smallest value, which is used to access all the
other objects. Links always point to objects holding greater values, so the
whole structure looks something like this:

185



Binary Heaps

Such structures are usually called trees, because of the way they branch.
Now, when you need the smallest element, you just take off the top ele-
ment and rearrange the tree so that one of the top element’s children —
the one with the lowest value — becomes the new top. When inserting
new elements, you ‘descend’ the tree until you find an element less than
the new element, and insert it there. This takes a lot less searching than a
sorted array does, but it has the disadvantage of creating a lot of objects,
which also slows things down.

◦ • ◦
A binary heap, then, does make use of a sorted array, but it is only partially
sorted, much like the tree above. Instead of objects, the positions in the
array are used to form a tree, as this picture tries to show:

186



Binary Heaps

Array element 1 is the root of the tree, array element 2 and 3 are its chil-
dren, and in general array element X has children X * 2 and X * 2 + 1.
You can see why this structure is called a ‘heap’. Note that this array starts
at 1, while CoffeeScript arrays start at 0. The heap will always keep the
smallest element in position 1, and make sure that for every element in the
array at position X, the element at X / 2 (round down) is smaller.
Finding the smallest element is now a matter of taking the element at po-
sition 1. But when this element is removed, the heap must make sure that
there are no holes left in the array. To do this, it takes the last element
in the array and moves it to the start, and then compares it to its child el-
ements at position 2 and 3. It is likely to be greater, so it is exchanged
with one of them, and the process of comparing it with its children is re-
peated for the new position, and so on, until it comes to a position where
its children are greater, or a position where it has no children.
[2, 3, 5, 4, 8, 7, 6]
# Take out 2, move 6 to the front.
[6, 3, 5, 4, 8, 7]
# 6 is greater than its first child 3, so swap them.
[3, 6, 5, 4, 8, 7]
# Now 6 has children 4 and 8 (position 4 and 5).
# It is greater than 4, so we swap again.
[3, 4, 5, 6, 8, 7]
# 6 is in position 4, and has no more children.
# The heap is in order again.

Similarly, when an element has to be added to the heap, it is put at the end
of the array and allowed to ‘bubble’ up by repeatedly exchanging it with
its parent, until we find a parent that is less than the new node.
[3, 4, 5, 6, 8, 7]
# Element 2 gets added again, it starts at the back.
[3, 4, 5, 6, 8, 7, 2]
# 2 is in position 7, its parent is at 3, which
# is a 5. 5 is greater than 2, so we swap.
[3, 4, 2, 6, 8, 7, 5]
# The parent of position 3 is position 1.
# Again, we swap.
[2, 4, 3, 6, 8, 7, 5]
# The element can not go further than position 1,
# so we are done.

187



Binary Heaps

Note how adding or inserting an element does not require it to be compared
with every element in the array. In fact, because the jumps between parents
and children get bigger as the array gets bigger, this advantage is especially
large when we have a lot of elements28.

◦ • ◦
Here is the full code of a binary heap implementation. Two things to note
are that, instead of directly comparing the elements put into the heap, a
function (scoreFunction) is first applied to them, so that it becomes pos-
sible to store objects that can not be directly compared. The default is the
identity function.
Also, because CoffeeScript arrays start at 0, and the parent/child calcula-
tions use a system that starts at 1, there are a few strange calculations to
compensate.
class BinaryHeap

# Public
#--------
constructor: (@scoreFunction = (x) -> x) ->

@content = []

push: (element) ->
# Add the new element to the end of the array.
@content.push element
# Allow it to bubble up.
@_bubbleUp @content.length - 1

pop: ->
# Store the first element so we can return it later.
result = @content[0]
# Get the element at the end of the array.
end = @content.pop()
# If there are any elements left, put the end
# element at the start, and let it sink down.
if @content.length > 0

@content[0] = end
@_sinkDown 0

result

28The amount of comparisons and swaps that are needed — in the worst case — can be
approached by taking the logarithm (base 2) of the amount of elements in the heap.

188



Binary Heaps

size: -> @content.length

remove: (node) ->
len = @content.length
# To remove a value, we must search through the
# array to find it.
for i in [0...len]

if @content[i] == node
# When it is found, the process seen in 'pop'
# is repeated to fill up the hole.
end = @content.pop()
if i != len - 1

@content[i] = end
if @scoreFunction(end) < @scoreFunction(node)

@_bubbleUp i
else

@_sinkDown i
return

throw new Error 'Node not found.'

# Private
#---------
_bubbleUp: (n) ->

# Fetch the element that has to be moved.
element = @content[n]
# When at 0, an element can not go up any further.
while n > 0

# Compute the parent element index, and fetch it.
parentN = Math.floor((n + 1) / 2) - 1
parent = @content[parentN]
# Swap the elements if the parent is greater.
if @scoreFunction(element) < @scoreFunction(parent)

@content[parentN] = element
@content[n] = parent
# Update 'n' to continue at the new position.
n = parentN

# Found a parent that is less,
# no need to move it further.
else

break
return

189



Binary Heaps

_sinkDown: (n) ->
# Look up the target element and its score.
length = @content.length
element = @content[n]
elemScore = @scoreFunction element
loop

# Compute the indices of the child elements.
child2N = (n + 1) * 2
child1N = child2N - 1
# This is used to store the new position of
# the element, if any.
swap = null
# If the first child exists (is inside the array)...
if child1N < length

# Look it up and compute its score.
child1 = @content[child1N]
child1Score = this.scoreFunction child1
# If the score is less than our elements,
# we need to swap.
if child1Score < elemScore

swap = child1N
# Do the same checks for the other child.
if child2N < length

child2 = @content[child2N]
child2Score = @scoreFunction child2
compScore = if swap == null

elemScore
else

child1Score
if child2Score < compScore

swap = child2N
# If the element needs to be moved,
# swap it, and continue.
if swap != null

@content[n] = @content[swap]
@content[swap] = element
n = swap

# Otherwise, we are done.
else

break
return

(exports ? this).BinaryHeap = BinaryHeap

190



Binary Heaps

And some test cases…
sortByValue = (obj) -> sortBy obj, (n) -> n
buildHeap = (c, a) ->

heap = new BinaryHeap
heap.push number for number in a
c.note heap

declare 'heap is created empty', [],
(c) -> c.assert (new BinaryHeap).size() == 0

declare 'heap pop is undefined when empty', [],
(c) -> c.assert isUndefined (new BinaryHeap).pop()

declare 'heap contains number of inserted elements',
[arbArray(arbInt)], (c, a) ->

c.assert buildHeap(c, a).size() == a.length

declare 'heap contains inserted elements',
[arbArray(arbInt)], (c, a) ->

heap = buildHeap c, a
c.assert isEqual sortByValue(a), \

sortByValue(heap.content)

declare 'heap pops elements in sorted order',
[arbArray(arbInt)], (c, a) ->

heap = buildHeap c, a
for n in sortByValue a then c.assert n == heap.pop()
c.assert heap.size() == 0

declare 'heap does not remove non-existent elements',
[arbArray(arbInt), arbInt],
expectException (c, a, b) ->

if b in a then c.guard false
heap = buildHeap c, a
heap.remove b

declare 'heap removes existing elements',
[arbArray(arbInt), arbInt], (c, a, b) ->

if not (b in a) then c.guard false
aSort = sortByValue without a, b
count = a.length - aSort.length
heap = buildHeap c, a
heap.remove b for i in [0...count]
for n in aSort then c.assert n == heap.pop()
c.assert heap.size() == 0

191



Performance

To give an idea of the relative performance of CoffeeScript for problem
solving and number crunching we can compare it with CPython. First a
small test of operations on a million floating point numbers.

# CoffeeScript
show = console.log

start = new Date()

N = 1000000
a = Array(N)
for i in [0...N]

a[i] = Math.random()

s = 0
for v in a

s += v

t = 0
for v in a

t += v*v
t = Math.sqrt t

duration = new Date() - start
show "N: #{N} in #{duration*0.001} s"
show "Result: #{s} and #{t}"

# CPython
import time
import random
import math

start = time.clock()
N = 1000000
a = [random.random()

for i in range(N)]

s = 0
for v in a:

s += v

t = 0
for v in a:

t += v*v
t = math.sqrt(t)

duration = time.clock() - start
print 'N:', N, 'in', duration, 's'
print 'Result:', s, 'and', t

The source code and the results are quite similar. On my machine the time
for CoffeeScript is about 0.41s and around 1.03s for CPython. You can try
it yourself with coffee A3-Microbench.coffee and if you have CPython
installed python A3-Microtest.py. C++ is 10× to 30× faster.

◦ • ◦
On the next page you can find implementations29 for the classic 8 queens
problem. The objective is to place eight queens on a chessboard without
any of the queens occupying the same row, column or diagonal. The two
implementations use the same algorithm and produce the same results.
Timing for CPython 0.27s and for CoffeeScript 0.06s.
29Background information on 8 queens puzzle, implementation and performance.

192

http://en.wikipedia.org/wiki/Eight_queens_puzzle
http://code.activestate.com/recipes/190465-generator-for-permutations-combinations-selections/
http://aminsblog.wordpress.com/2011/05/29/n-queen-problem-python-2-6-5-vs-pypy-1-5-0/


Performance

# CoffeeScript encoding: utf-8

start = new Date()
show = console.log

# Create variations to try
permute = (L) ->

n = L.length
return ([elem] for elem in L) if n is 1
[a, L] = [ [L[0]], L.slice 1 ]
result = []
for p in permute L

for i in [0...n]
result.push p[...i].concat a, p[i...]

result

# Check a variation
test = (p, n) ->

for i in [0...n - 1]
for j in [i + 1...n]

d = p[i] - p[j]
return true if j - i == d or i - j == d

false

# N queens solver
nQueen = (n) ->

result = []
for p in permute [0...n]

result.push p unless test p, n
result

# Repeat a string a number of times
rep = (s, n) -> (s for [0...n]).join ''

# Display a board with a solution
printBoard = (solution) ->

board = "\n"
end = solution.length
for pos, row in solution

board += "#{end - row} #{rep ' - ', pos} " +
"* #{rep ' - ', end - pos - 1}\n"

# Using radix 18 hack!
board += ' ' + (n.toString 18 \

for n in [10...18]).join(' ').toUpperCase()
board + "\n"

# Find all solutions
solve = (n) ->

for solution, count in nQueen n
show "Solution #{count+1}:"
show printBoard solution

count

solve 8 # Normal chessboard size

show "Timing: #{(new Date() - start)*0.001}s"

# CPython encoding: utf-8
import time
t=time.clock()

def permute(L):
"Create variations to try"
n = len(L)
if n == 1:

for elem in L:
yield [elem]

else:
a = [L.pop(0)]
for p in permute(L):

for i in range(n):
yield p[:i] + a + p[i:]

def test(p, n):
"Check a variation"
for i in range(n - 1):

for j in range(i + 1, n):
d = p[i] - p[j]
if j - i == d or i - j == d:

return True
return False

def n_queen(n):
"N queens solver"
for p in permute(range(n)):

if not test(p, n): yield p

# Start columns from A
base_char = ord('A')

def print_board(solution):
"Display a board with a solution"
board = []
end = len(solution)
for row, pos in enumerate(solution):

board += ["\n%s %s * %s" % ((end - row),
(' - ' * pos),
(' - ' * (end - pos - 1)))]

# Using character set hack!
board += '\n ' + \

' '.join([chr(base_char+i)
for i in range(0, end)])

return ''.join(board) + '\n'

def solve(n):
"Find all solutions"
for count, solution in enumerate(n_queen(n)):

print "Solution %d:" % count
print print_board(solution)

return count

solve(8) # Normal chessboard size

print "Timing: ", time.clock()-t, "s"

Solution 1 −−−−−−−−−−−−−−−−→ Solution 92

193



Command Line Utility

The utility used to remove solutions from source files is shown here. Partly
as an example of a command line program, partly to make this book and
its accompanying source code self-containing.
The program uses the asynchronous file system functions in the same
manner as server programs. The synchronous functions are more con-
ventional, but less illustrative.
fs = require "fs"
show = console.log

String::contains = (pattern) ->
///#{pattern}///.test this

leadingWhitespace = (str) ->
(str.match /(\s*)\w/)[1] ? ""

errorWrapper = (action) ->
(err, args...) ->

if err then throw err
action args...

ifFileExists = (filename, action) ->
fs.stat filename, errorWrapper (stat) ->

if stat.isFile() then action()

getFileAsLines = (filename, action) ->
ifFileExists filename, ->

fs.readFile filename, "utf8",
errorWrapper (content) ->

action content.split "\n"

194



Command Line Utility

saveFile = (filename, content) ->
fs.writeFile filename, content,

errorWrapper -> show "Saved #{filename}"

stripSolutions = (lines) ->
out = ""
inSolution = false
concat = (str) -> out += str + "\n"
for line in lines

if line.contains "'--- Exercise \\d+ ---'"
inSolution = true
concat line
indent = leadingWhitespace line
concat "#{indent}process.exit()" +

" # Replace this line with your solution"
else if inSolution

if line.contains "'--- End of Exercise ---'"
concat line
inSolution = false

# else ignore line in solution
else

concat line
# Remove trailing newline
out[...out.length-1]

stripFile = (fromName, toName) ->
if fromName?

getFileAsLines fromName, (lines) ->
saveFile toName, stripSolutions lines

else
show "Expected a file name " +

"to strip for solutions"

195



Command Line Utility

copyFile = (fromName, toName) ->
if fromName?

ifFileExists fromName, ->
fs.readFile fromName, "utf8",

errorWrapper (content) ->
saveFile toName, content,

else
show "Expected a file name to copy"

toDir = "../src-no-solutions"
fs.mkdir toDir, 0777, (err) ->

if err
throw err unless err.code is 'EEXIST'
show "Reusing"

else
show "Created"

fromDir = process.argv[2]
if fromDir?

fs.readdir fromDir, errorWrapper (files) ->
for filename in files

if filename.contains "\\w\\w-\\w+.coffee"
stripFile filename, "#{toDir}/#{filename}"

else
copyFile filename, "#{toDir}/#{filename}"

else
show "Expected a directory with " +

"solutions to strip"

196



Reference and Index

197



Reference

Language Reference

Refer to coffeescript.org for further reference material and examples.

General

• Whitespace is significant
• Ending a line will terminate expressions - no need to use semicolons
• Semicolons can be used to fit multiple expressions onto a single line
• Use indentation instead of curly braces { } to surround blocks of

code in functions, if statements, switch, and try/catch

• Comments starts with # and run to the end of the line

Embedded JavaScript

• Use backquotes `` to embed JavaScript code within CoffeeScript

Functions

• Functions are defined by an optional list of parameters in parenthe-
ses, an arrow, and an optional function body. The empty function
looks like: ->

• Mostly no need to use parentheses to invoke a function if it is passed
arguments. The implicit call wraps forward to the end of the line or
block expression.

• Functions may have default values for arguments. Override the de-
fault value by passing a non-null argument.

198

http://coffeescript.org


Reference

Objects and arrays

• Objects and arrays are similar to JavaScript
• When each property is listed on its own line, the commas are op-

tional
• Objects may be created using indentation instead of explicit braces,

similar to YAML
• Reserved words, like class, can be used as properties of an object

without quoting them as strings

Lexical Scoping and Variable Safety

• Variables are declared implicitly when used (no var keyword).
• The compiler ensures that variables are declared within lexical scope.

An outer variable is not redeclared within an inner function when it
is in scope

• Using an inner variable can not shadow an outer variable, only refer
to it. So avoid reusing the name of an external variable in a deeply
nested function

• CoffeeScript output is wrapped in an anonymous function, making
it difficult to accidentally pollute the global namespace

• To create top-level variables for other scripts, attach them as proper-
ties on window, or to exports in CommonJS. Use: exports ? this

If, Else, Unless, and Conditional Assignment

• if/else can be written without parentheses and curly braces
• Multi-line conditionals are delimited by indentation
• if and unless can be used in postfix form i.e. at the end of the

statement
• if statements can be used as expressions. No need for ?:

Splats

• Splats ... can be used instead of the variable number of arguments
object and are available for both function definition and invocation

199



Reference

Loops and Comprehensions

• Comprehensions for ... in work over arrays, objects, and ranges
• Comprehensions replace for loops, with optional guard clauses and

the value of the current array index: for value, index in array

• Array comprehensions are expressions, and can be returned and as-
signed

• Comprehensions may replace each/forEach, map or select/filter
• Use a range when the start and end of a loop is known (integer steps)
• Use by to step in fixed-size increments
• When assigning the value of a comprehension to a variable, Coffee-

Script collects the result of each iteration into an array
• Return null, undefined or true if a loop is only for side-effects
• To iterate over the key and value properties in an object, use of

• Use: for own key, value of object to iterate over the keys that
are directly defined on an object

• The only low-level loop is the while loop. It can be used as an
expression, returning an array containing the result of each iteration
through the loop

• until is equivalent to while not

• loop is equivalent to while true

• The do keyword inserts a closure wrapper, forwards any arguments
and invokes a passed function

Array Slicing and Splicing with Ranges

• Ranges can be used to extract slices of arrays
• With two dots [3..6], the range is inclusive (3, 4, 5, 6)
• With three dots [3...6], the range excludes the end (3, 4, 5)
• The same syntax can be used with assignment to replace a segment

of an array with new values, splicing it
• Strings are immutable and can not be spliced

200



Reference

Everything is an Expression

• Functions return their final value
• The return value is fetched from each branch of execution
• Return early from a function body by using an explicit return
• Variable declarations are at the top of the scope, so assignment can

be used within expressions, even for variables that have not been
seen before

• Statements, when used as part of an expression, are converted into
expressions with a closure wrapper. This allows assignment of the
result of a comprehension to a variable

• The following are not expressions: break, continue, and return

Operators and Aliases

• CoffeeScript compiles == into ===, and != into !==. There is no
equivalent to the JavaScript == operator

• The alias is is equivalent to ===, and isnt corresponds to !==

• not is an alias for !
• Logical operator aliases: and is &&, or is ||
• In while, if/else and switch/when statements the then keyword

can be used to keep the body on the same line
• Alias for boolean true is on and yes (as in YAML)
• Alias for boolean false is off and no

• For single-line statements, unless can be used as the inverse of if
• Use @property instead of this.property
• Use in to test for array presence
• Use of to test for object-key presence

Existential Operator

• Use the existential operator ? to check if a variable exists
• ? returns true unless a variable is null or undefined
• Use ?= for safer conditional assignment than ||= when handling

numbers or strings

201



Reference

• The accessor variant of the existential operator ?. can be used to
soak up null references in a chain of properties

• Use ?. instead of the dot accessor . in cases where the base value
may be null or undefined. If all of the properties exist then the
expected result is returned, if the chain is broken, then undefined
is returned instead

Classes, Inheritance, and Super

• Object orientation as in most other object oriented languages
• The class structure allows to name the class, set the superclass with
extends, assign prototypal properties, and define a constructor, in
a single assignable expression

• Constructor functions are named as the class name, to support re-
flection

• Lower level operators: The extends operator helps with proper pro-
totype setup. :: gives access to an object’s prototype. super() calls
the immediate ancestor’s method of the same name

• A class definition is a block of executable code, which may be used
for meta programming.

• In the context of a class definition, this is the class object itself (the
constructor function), so static properties can be assigned by using
@property: value, and functions defined in parent classes can be
called with: @inheritedMethodName()

Destructuring Assignment

• To make extracting values from complex arrays and objects conve-
nient, CoffeeScript implements destructuring assignment

• When assigning an array or object literal to a value, CoffeeScript
breaks up and matches both sides against each other, assigning the
values on the right to the variables on the left

• The simplest case is parallel assignment [a,b] = [b,a]

• It can be used with functions that return multiple values
• It can be used with any depth of array and object nesting to get

deeply nested properties and can be combined with splats

202



Reference

Function binding

• The fat arrow => can be used to define a function and bind it to the
current value of this

• This is helpful when using callback-based libraries, for creating it-
erator functions to pass to each or event-handler functions to use
with bind

• Functions created with => are able to access properties of the this
where they are defined

Switch/When/Else

• The switch statement do not need a break after every case
• A switch is a returnable, assignable expression
• The format is: switch condition, when clauses, else the default case
• Multiple values, comma separated, can be given for each when clause.

If any of the values match, the clause runs

Try/Catch/Finally

• try/catch statements are as in JavaScript (although they are ex-
pressions)

String Interpolation, Heredocs, and Block Comments

• Single-quoted strings are literal. Use backslash for escape charac-
ters

• Double-quoted strings allow for interpolated values, using #{ ... }

• Multiline strings are allowed
• A heredoc ''' can be used for formatted or indentation-sensitive

text (or to avoid escaping quotes and apostrophes)
• The indentation level that begins a heredoc is maintained through-

out, so the text can be aligned with the body of the code
• Double-quoted heredocs """ allow for interpolation
• Block comments ### are similar to heredocs, and are preserved in

the generated code

203



Reference

Chained Comparisons

• Use a chained comparison minimum < value < maximum to test if a
value falls within a range

Extended Regular Expressions

• Extended regular expressions “heregexes” are delimited by /// and
are similar to heredocs and block comments

• Extended regular expressions ignore internal whitespace and can
contain comments

Reserved Words

Keywords

break by catch
class continue debugger
delete do else
extends false finally
for if in
instanceof loop new
null of return
super switch then
this throw true
try typeof undefined
unless until when
while

Aliases

and : && or : || not : !
is : == isnt : !=
yes : true no : false
on : true off : false

204



Reference

Underscore

Functions

all any bind
bindAll breakLoop clone
compact compose contains
defer delay detect
each every extend
filter first flatten
foldl foldr forEach
functions head identity
include indexOf inject
intersect invoke isArguments
isArray isBoolean isDate
isElement isEmpty isEqual
isFunction isNull isNumber
isRegExp isString isUndefined
keys last lastIndexOf
map max memoize
methods min mixin
noConflict pluck range
reduce reduceRight reject
rest select size
some sortBy sortedIndex
tail tap template
templateSettings times toArray
uniq uniqueId values
without wrap zip

General call convention: functional obj, iterator, context.
Refer to src/prelude/underscore.coffee for the annotated source.

205



Reference

qc.js

Exported Definitions
arbChoose Generator that chooses uniformly among the given generators.

parameter generators…
arbConst Generator that always returns one of the given constant values.

parameter values…
arbBool Boolean value generator with 50:50 chance of true or false.
arbNull Null generator that always generates ’null’.
arbWholeNum Integer value generator for values ≥ 0. Supports shrinking.
arbInt Integer value generator. Supports shrinking.
arbFloatUnit Generator for a floating point value in between 0.0 and 1.0.

Supports shrinking.
arbRange Integer range value generator.

parameter minimum value
parameter maximum value

arbNullOr Chooses null with 10% probability and the given generator
with 90%. Supports shrinking.
parameter another generator

arrShrinkOne Array shrinking strategy that builds new Arrays by removing
one element from a given array.

arbArray Array generator. Generates an array of arbitrary length with
the given generator.
parameter generator that creates the resulting array

values.
parameter an optional shrinking strategy. Default is

‘arrShrinkOne’.
arbDate Date value generator. Always generates a new Date object by

calling ‘new Date()’.
arbMod Basis generator for arbChar and arbString.
arbChar Character  value  generator  for  any character  with  character

code in range 32-255.
arbString String value generator. All characters in the generated String

are in range 32-255. Supports shrinking.
arbUndef Generator that always generates ’undefined’.

206



Reference

arbUndefOr Chooses undefined with 10% probability and the given gener-
ator with 90%. Supports shrinking.
parameter another generator

expectException Property test function modifier. Using this modifier, it is as-
sumed that the testing function will throw an exception and if
not the property will fail.

failOnException Property test function modifier. Instead of finishing testing
when an unexpected exception is thrown, the offending prop-
erty is marked as failure and qc will continue.

Case Test case class generated every time a property is tested. An in-
stance of Case is always passed as first argument to a property’s
testing function so it can control the test case’s properties.

Case::assert Tests and notifies qc if a property fails or not.
parameter pass false, if the property failed, true oth-

erwise
Case::guard Used to test if the input is good for testing the property.

parameter pass false to mark the property as invalid
for the given input.

Case::classify Adds a tag to a test run.
parameter if true then the tag is added to the case,

else not.
parameter tag value to add

Case::collect Collect builds a histogram of all collected values for all runs
of the property.
parameter value to collect

Case::noteArg Adds the given value to the test case for reporting in case of
failure.
parameter value to add

Case::note Same as Case::noteArg but returning its argument so it can be
used inline. Defined in prelude.

Case::noteVerbose Same as Case::note but also logs the noted args. Defined in
prelude.

declare Builds and registers a new property.
parameter the property’s name
parameter array of generators with a length equal to

the arity of the body function. The entry
at position i will drive the i-th argument
of the body function.

207



Reference

parameter body function that test the property
return a new registered property object of type

Prop.
testPure Helper to declare a named test property for a pure function.

Defined in prelude.
parameter function to test
parameter array of generators matching argument

types
parameter a descriptive name
parameter property  function  which  is  passed  the

test-case, the arguments and the result of
calling the function being tested. Must
return true if the property test succeeded,
false otherwise.

Prop Creates a new property with a given array of argument gen-
erators and a testing function. For each generator a value is
generated, so for testing a 2-ary function the array must con-
tain 2 generators.

Prop::run Tests the property.
parameter configuration of type Config to test prop-

erty with
return depending on test result a Pass, Fail or

Invalid object
allProps Internal array of all declared/registered properties
resetProps Deletes all declared properties.
runAllProps Tests all registered properties.

parameter configuration of type Config to test the
properties with

parameter listener of a subclass of ConsoleListener
test Test all known properties with a NodeListener and a configu-

ration of 100 pass and 1000 invalid tests. Defined in prelude.
Invalid Report class for invalid tested properties.
Pass Report class for successful tested properties.
Fail Report class for failed tested properties.
Stats Statistics class for counting number of pass/invalid runs, build-

ing histograms and other statistics for reporting on a property
and its test results.

Config Testing Configuration.

208



Reference

parameter maximum passes per property
parameter maximum invalid tests per property
parameter maximum number of shrinking steps per

property
ConsoleListener Abstract class for building ‘console’ based listeners.
NodeListener Listener with node compatible output in colors. Defined in

prelude.
FBCListener Listener for sending property results to FireBug’s console
RhinoListener Listener for Rhino, sending property results to stdout.
Distribution Probability distributions
genvalue Draws a new value from a generator. A generator is either a

function accepting a seed argument or an object with a method
’arb’ accepting a seed argument.

genshrinked Uses the generator specific shrinking method to shrink a value
that the generator created earlier. If the generator is a function
or has no method named ’shrink’ or is an objects with a ’shrink’
method set to null, then no shrinking will be performed. If a
shrinking method is defined, then it is called with the original
seed and the value the generator created. The shrinking method
must return an array of ‘shrinked’ values or null, undefined, or
an empty array if no ‘shrinked’ values could be created.

justSize Passes the size ‘seed’ argument used to drive generators di-
rectly to the property test function.

Utilities A group of utilities that can be used to build generators: fre-
quency, choose, randWhole, randInt, randRange, randFloatU-
nit

209



Reference

Additional Words

Prelude definitions
show globalize
confirm prompt getServerURL
viewURL viewServer stopServer
fileExists readTextFile readBinaryFile
_ kup qc

Refer to src/prelude/prelude.coffee for the annotated source.

CoffeeScript environment
Buffer clearInterval clearTimeout
console global GLOBAL
process root setInterval
setTimeout

View the interactive environment with: →| / ‘Tab’.

JavaScript future words

abstract boolean byte case
char const default double
enum export final float
function goto implements import
int interface let long
native package private protected
public short static synchronized
throws transient var void
volatile with yield

210



Index

%, 36
&&, 41
(), 21, 28
++, 35
+=, 35
-, 24
–, 35
-=, 35
->, 43
/, 153
///, 155
/=, 35
=, 60
==, 62, 73
?, 39
?., 77
*=, 35
[], 59, 63
{}, 59
abstraction, 90
anonymous function, 55
any, 122
apply, 95, 138
applying, 21, 28
argument, 28, 43
arguments, 77
array, 63
attribute, 99

A*, 128
backquotes, 39
binary heap, 130, 185
binary operator, 24
block, 31
body, 31, 43
Boolean, 30
boolean, 24
break, 37
call, 139
capitalisation, 34
catch, 85
chained comparison, 24
charAt, 66
class, 35, 139
closure, 51
comment, 34
compose, 114
concat, 112, 125
confirm, 29
constructor, 72, 139, 140
continue, 181
control flow, 35
corner case, 67
Date, 72
delete, 60
depend, 162

211



Index

Dictionary, 148
domain-specific language, 118
efficiency, 53
elegance, 53
else, 36
embedded JavaScript, 39
encapsulation, 133
environment, 27
Error, 87
eval, 171
every, 123
exception, 84
exception handling, 84
existential accessor, 77
existential operator, 39
exports, 165
expression, 26
extends, 140
filter, 124
finally, 86
for, 33
forEachOf, 147
fragile base class, 141, 144
function, 28, 42
function composition, 113
functional programming, 91
generate and test, 120
getTimezoneOffset, 73
graph, 116
hasOwnProperty, 146
heredocs, 22
hidden properties, 80
higher-order function, 94
HTML, 98
if, 36

indentation, 31, 32
indexOf, 68
interface, 137
invoking, 28
isNaN, 40
join, 65
keyword, 35
length, 59, 63, 77
library, 174
local environment, 49
loop, 31, 37
map, 96
Math, 79
Math.ceil, 79
Math.floor, 79
Math.max, 28
Math.pow, 82
Math.random, 120
Math.round, 79
method, 64
module, 161
modulo, 22
mutability, 61
name-space pollution, 164
NaN, 40
new, 71, 139
newline, 23
null, 38
Number, 30
number, 19
Object, 140
object, 59
object-oriented programming, 137
of, 60, 69, 146, 147

212



Index

parameter, 28
partial application, 112
pop, 65
precedence, 21
prompt, 30
properties, 59
propertyIsEnumerable, 148
prototype, 144
pure function, 42
push, 65, 125
raise, 84
range, 33
read-only properties, 81
recursion, 52, 124
reduce, 95
reference, 79
regular expression, 153
replace, 157
reserved words, 35
return, 28, 43
script, 169
search, 136, 153
semicolon, 26
set, 61
shadow, 49
show, 28, 29
side effect, 26
slice, 67
sort, 185
split, 66
stack, 54, 85
statement, 26
String, 30
string, 22
substitution principle, 142
super, 141
switch, 180

tag, 98
test, 155
testing, 44
this, 138, 139
throw, 84, 85
timezone, 73
toLowerCase, 64
top-level environment, 49
toString, 80, 144
toUpperCase, 64
tree, 186
try, 85
type conversion, 39
unary operator, 24
undefined, 38
Unicode, 24
unless, 37
until, 38
unwinding the stack, 85
value, 19
variable, 26
watched properties, 81
while, 31
XML, 110

213


	Preface
	Foreword
	Software

	Language
	Introduction
	Basic CoffeeScript
	Functions
	Data Structures
	Error Handling

	Paradigm
	Functional Programming
	Searching
	Object Orientation
	Regular Expressions
	Modularity

	Appendix
	Language Extras
	Binary Heaps
	Performance
	Command Line Utility

	Reference and Index
	Reference
	Index


