
CoffeeScript
Quick Reference

�
coffeescript.org

�
�

General1

· Whitespace is significant
· Ending a line will terminate expressions

- no need to use semicolons
· Semicolons can be used to fit multiple

expressions onto a single line
· Use indentation instead of curly braces
{ } to surround blocks of code in
functions, if statements, switch, and
try/catch

· Comments starts with # and run to the
end of the line

Functions

· Functions are defined by an optional list
of parameters in parentheses, an arrow,
and an optional function body. The
empty function looks like: ->

· Mostly no need to use parentheses to
invoke a function if it is passed argu-
ments. The implicit call wraps forward
to the end of the line or block expres-
sion.

· Functions may have default values for
arguments. Override the default value
by passing a non-null argument.

Objects and arrays

· Objects and arrays are similar to
JavaScript

· When each property is listed on its own
line, the commas are optional

· Objects may be created using indenta-
tion instead of explicit braces, similar to
YAML

· Reserved words, like class, can be used
as properties of an object without quot-
ing them as strings

Lexical Scoping and Variable Safety

· Variables are declared implicitly when
used (no var keyword).

· The compiler ensures that variables are
declared within lexical scope. An outer
variable is not redeclared within an in-
ner function when it is in scope

· Using an inner variable can not shadow
an outer variable, only refer to it. So
avoid reusing the name of an external
variable in a deeply nested function

· CoffeeScript output is wrapped in an
anonymous function, making it diffi-
cult to accidentally pollute the global
namespace

· To create top-level variables for other
scripts, attach them as properties on
window, or to exports in CommonJS.
Use: exports ? this

Splats

· Splats ... can be used instead of the
variable number of arguments object
and are available for both function def-
inition and invocation

Loops and Comprehensions

· Comprehensions for ... in work
over arrays, objects, and ranges

· Comprehensions replace for loops,
with optional when guard clauses and
the value of the current array index:
for value, index in array

· Array comprehensions are expressions,
and can be returned and assigned

· Comprehensions may replace
each/forEach, map or select/filter

· Use a range when the start and end of a
loop is known (integer steps)

· Use by to step in fixed-size increments
· When assigning the value of a compre-

hension to a variable, CoffeeScript col-
lects the result of each iteration into an
array

· Return null, undefined or true if a
loop is only for side-effects

· To iterate over the key and value prop-
erties in an object, use of

· Use: for own key, value of object
to iterate over the keys that are directly
defined on an object

· The only low-level loop is the while
loop. It can be used as an expression,
returning an array containing the result
of each iteration through the loop

· until is equivalent to while not

· loop is equivalent to while true

· The do keyword inserts a closure wrap-
per, forwards any arguments and in-
vokes a passed function

Try/Catch/Finally

· try/catch statements are as in
JavaScript (although expressions)

If, Else, Unless, and Conditional Assignment

· if/else can be written without paren-
theses and curly braces

· Multi-line conditionals are delimited by
indentation

· if and unless can be used in postfix
form i.e. at the end of the statement

· if statements can be used as expres-
sions. No need for ?:

Chained Comparisons

· Use a chained comparison to test if a
value is within a range:
minimum < value < maximum

Array Slicing and Splicing with Ranges

· Ranges can be used to extract slices of
arrays

· With two dots [3..6], the range is in-
clusive (3, 4, 5, 6)

· With three dots [3...6], the range ex-
cludes the end (3, 4, 5)

· The same syntax can be used with as-
signment to replace a segment of an ar-
ray with new values, splicing it

· Strings are immutable and can not be
spliced

Embedded JavaScript

· Use backquotes `` to embed JavaScript
code within CoffeeScript

1 E. Hoigaard © 2554/2011 Rev. α

1

http://jashkenas.github.com/coffee-script

Everything is an Expression

· Functions return their final value
· The return value is fetched from each

branch of execution
· Return early from a function body by

using an explicit return
· Variable declarations are at the top of

the scope, so assignment can be used
within expressions, even for variables
that have not been seen before

· Statements, when used as part of an ex-
pression, are converted into expressions
with a closure wrapper. This allows as-
signment of the result of a comprehen-
sion to a variable

· The following are not expressions:
break, continue, and return

Operators and Aliases

· CoffeeScript compiles == into ===, and
!= into !==. There is no equivalent to
the JavaScript == operator

· The alias is is equivalent to ===, and
isnt corresponds to !==

· Logical operator aliases: and is &&, or is
|| and not is an alias for !

· In while, if/else and switch/when
statements the then keyword can be
used to keep the body on the same line

· Alias for boolean true is on and yes (as
in YAML)

· Alias for boolean false is off and no

· For single-line statements, unless can
be used as the inverse of if

· Use @property or @method instead of
this.something

· Use in to test for array presence
· Use of to test for object-key presence

Existential Operator

· Use the existential operator ? to check if
a variable exists. ? returns true unless
a variable is null or undefined

· Use ?= for safer conditional assignment
than ||= with numbers or strings

· The accessor variant of the existential
operator ?. can be used to soak up null
references in a chain of properties

· Use ?. instead of the dot accessor . in
cases where the base value may be null
or undefined. If all of the properties ex-
ist then the expected result is returned,
if the chain is broken, then undefined is
returned instead

Classes, Inheritance, and Super

· Object orientation as in most other ob-
ject oriented languages

· The class structure allows to name the
class, set the superclass with extends,
assign prototypal properties, and define
a constructor, in a single assignable
expression

· Constructor functions are named as the
class name, to support reflection

· Lower level operators: The extends
operator helps with proper prototype
setup. :: gives access to an object’s
prototype. super() calls the immediate
ancestor’s method of the same name

· A class definition is a block of exe-
cutable code, which may be used for
meta programming.

· In the context of a class definition,
this is the class object itself (the
constructor function), so static
properties can be assigned by using
@property: value, and functions de-
fined in parent classes can be called
with: @inheritedMethodName()

Destructuring Assignment

· To make extracting values from com-
plex arrays and objects convenient,
CoffeeScript implements destructuring
assignment

· When assigning an array or object lit-
eral to a value, CoffeeScript breaks up
and matches both sides against each
other, assigning the values on the right
to the variables on the left

· The simplest case is parallel assignment
[a,b] = [b,a]

· It can be used with functions that return
multiple values

· It can be used with any depth of array
and object nesting to get deeply nested
properties and can be combined with
splats

Function binding

· The fat arrow => can be used to define a
function and bind it to the current value
of this

· This is helpful when using callback-
based libraries, for creating iterator
functions to pass to each or event-
handler functions to use with bind

· Functions created with => are able to ac-
cess properties of the this where they
are defined

Switch/When/Else

· The switch statement do not need a
break after every case

· A switch is a returnable, assignable ex-
pression

· The format is: switch condition, when
clauses, else the default case

· Multiple values, comma separated, can
be given for each when clause. If any of
the values match, the clause runs

String Interpolation, Heredocs, and Block Comments

· Single-quoted strings are literal. Use
backslash for escape characters

· Double-quoted strings allow for inter-
polated values, using #{ ... }

· Multiline strings are allowed
· A heredoc ''' can be used for formatted

or indentation-sensitive text (or to avoid
escaping quotes and apostrophes)

· The indentation level that begins a here-
doc is maintained throughout, so the
text can be aligned with the body of the
code

· Double-quoted heredocs """ allow for
interpolation

· Block comments ### are similar to
heredocs, and are preserved in the gen-
erated code

Extended Regular Expressions

· Extended regular expressions are de-
limited by /// and are similar to here-
docs and block comments.

· They ignore internal whitespace and
can contain comments

Aliases

and : && or : || not : !

is : == isnt : !=

yes : true no : false

on : true off : false

http://autotelicum.github.com/Smooth-CoffeeScript/

2

http://autotelicum.github.com/Smooth-CoffeeScript/

